2016年全国统一高考数学试卷(江苏卷)
将一颗质地均匀的骰子(一种各个面上分别标有1,2,3,4,5,6个点的正方体玩具)先后抛掷2次,则出现向上的点数之和小于10的概率是 .
如图,在平面直角坐标系 中, 是椭圆 的右焦点,直线 与椭圆交于 两点,且 , 则该椭圆的离心率是 ________.
如图,在直三棱柱 中, 分别为 的中点,点 在侧棱 上, 且
求证:(1)直线 平面 ;
(2) 平面 平面 ;
现需要设计一个仓库,它由上下两部分组成,上部分的形状是正四棱雉 ,下部分的形状是正四棱柱 (如图所示),并要求正四棱柱的高 的四倍.
(1)若 ,则仓库的容积是多少?
(2)若正四棱柱的侧棱长为 ,则当 为多少时,仓库的容积最大?
如图, 在平面直角坐标系 中, 已知以 为圆心的圆
及其上一点
(1) 设圆 与 轴相切, 与圆 外切, 且圆心 在直线 上, 求圆 的标准方程;
(2) 设平行于 的直线 与圆 相交于 两点, 且 , 求直线 的方程;
(3) 设点 满足:存在圆 上的两点 和 , 使得 , 求实数 的取值范围。
已知函数 .
(1)设 .
①求方程 的根;
②若对任意 , 不等式 恒成立, 求实数 的最大值;
(2)若 , 函数 有且只有 1 个零点, 求 的值。
记 . 对数列 和 的子集 , 若 , 定义 若
, 定 义 . 例 如 : 时 ,
现设 是公比为 3 的等比数列, 且当 时,
(1) 求数列 的通项公式;
(2) 对任意正整数 , 若 , 求证: ;
(3) 设 , 求证: .
C.(选做题选修 )在平面之间坐标系 中,已知直线 的参数方程式为 ,
椭圆 的参数方程为 为参数).设直线 与椭圆 相交于 , 两点, 求线段 的长.
如图, 在平面直角坐标系 中, 已知直线 , 抛物线
(1) 若直线 过抛物线 的焦点, 求抛物线 的方程;
(2) 已知抛物线 上存在关于直线 对称的相异两点 和 .
①求证:线段 的中点坐标为 ;
②求 的取值范围.