2018年四川省成都市中考数学试卷
2018年5月21日,西昌卫星发射中心成功发射探月工程嫦娥四号任务“鹊桥号”中继星,卫星进入近地点高度为200公里、远地点高度为40万公里的预定轨道.将数据40万用科学记数法表示为
A. B. C. D.
如图是成都市某周内日最高气温的折线统计图,关于这7天的日最高气温的说法正确的是
A.极差是 B.众数是 C.中位数是 D.平均数是
关于二次函数 ,下列说法正确的是
A.图象与 轴的交点坐标为
B.图象的对称轴在 轴的右侧
C.当 时, 的值随 值的增大而减小
D. 的最小值为
在一个不透明的盒子中,装有除颜色外完全相同的乒乓球共16个,从中随机摸出一个乒乓球,若摸到黄色乒乓球的概率为 ,则该盒子中装有黄色乒乓球的个数是 .
如图,在矩形 中,按以下步骤作图:①分别以点 和 为圆心,以大于 的长为半径作弧,两弧相交于点 和 ;②作直线 交 于点 .若 , ,则矩形的对角线 的长为 .
为了给游客提供更好的服务,某景区随机对部分游客进行了关于“景区服务工作满意度”的调查,并根据调查结果绘制成如图不完整的统计图表.
满意度 |
人数 |
所占百分比 |
非常满意 |
12 |
|
满意 |
54 |
|
比较满意 |
|
|
不满意 |
6 |
|
根据图表信息,解答下列问题:
(1)本次调查的总人数为 ,表中 的值 ;
(2)请补全条形统计图;
(3)据统计,该景区平均每天接待游客约3600人,若将“非常满意”和“满意”作为游客对景区服务工作的肯定,请你估计该景区服务工作平均每天得到多少名游客的肯定.
由我国完全自主设计、自主建造的首艘国产航母于2018年5月成功完成第一次海上试验任务.如图,航母由西向东航行,到达 处时,测得小岛 位于它的北偏东 方向,且与航母相距80海里,再航行一段时间后到达 处,测得小岛 位于它的北偏东 方向.如果航母继续航行至小岛 的正南方向的 处,求还需航行的距离 的长.
(参考数据: , , , , ,
如图,在平面直角坐标系 中,一次函数 的图象经过点 ,与反比例函数 的图象交于 .
(1)求一次函数和反比例函数的表达式;
(2)设 是直线 上一点,过 作 轴,交反比例函数 的图象于点 ,若 , , , 为顶点的四边形为平行四边形,求点 的坐标.
如图,在 中, , 平分 交 于点 , 为 上一点,经过点 , 的 分别交 , 于点 , ,连接 交 于点 .
(1)求证: 是 的切线;
(2)设 , ,试用含 , 的代数式表示线段 的长;
(3)若 , ,求 的长,
汉代数学家赵爽在注解《周髀算经》时给出的“赵爽弦图”是我国古代数学的瑰宝.如图所示的弦图中,四个直角三角形都是全等的,它们的两直角边之比均为 .现随机向该图形内掷一枚小针,则针尖落在阴影区域的概率为 .
如图,在菱形 中, , , 分别在边 , 上,将四边形 沿 翻折,使 的对应线段 经过顶点 ,当 时, 的值为 .
设双曲线 与直线 交于 , 两点(点 在第三象限),将双曲线在第一象限的一支沿射线 的方向平移,使其经过点 ,将双曲线在第三象限的一支沿射线 的方向平移,使其经过点 ,平移后的两条曲线相交于 , 两点,此时我们称平移后的两条曲线所围部分(如图中阴影部分)为双曲线的“眸”, 为双曲线的“眸径“,当双曲线 的眸径为6时, 的值为 .
为了美化环境,建设宜居成都,我市准备在一个广场上种植甲、乙两种花卉,经市场调查,甲种花卉的种植费用 (元 与种植面积 之间的函数关系如图所示,乙种花卉的种植费用为每平方米100元.
(1)直接写出当 和 时, 与 的函数关系式;
(2)广场上甲、乙两种花卉的种植面积共 ,若甲种花卉的种植面积不少于 ,且不超过乙种花卉种植面积的2倍,那么应该怎样分配甲、乙两种花卉的种植面积才能使种植总费用最少?最少总费用为多少元?
在 中, , , ,过点 作直线 ,将 绕点 顺时针旋转得到△ (点 , 的对应点分别为 , ,射线 , 分别交直线 于点 , .
(1)如图1,当 与 重合时,求 的度数;
(2)如图2,设 与 的交点为 ,当 为 的中点时,求线段 的长;
(3)在旋转过程中,当点 , 分别在 , 的延长线上时,试探究四边形 的面积是否存在最小值.若存在,求出四边形 的最小面积;若不存在,请说明理由.