如图, ⊙ O 是 ΔABC 的外接圆, AB 是直径, D 是 AC 中点,直线 OD 与 ⊙ O 相交于 E , F 两点, P 是 ⊙ O 外一点, P 在直线 OD 上,连接 PA , PC , AF ,且满足 ∠ PCA = ∠ ABC .
(1)求证: PA 是 ⊙ O 的切线;
(2)证明: E F 2 = 4 OD · OP ;
(3)若 BC = 8 , tan ∠ AFP = 2 3 ,求 DE 的长.
试题篮