启教通信息平台
  首页 / 试题 / 高中数学 / 试题详细
  • 科目:数学
  • 题型:解答题
  • 难度:中等
  • 人气:1377

已知数列{an}中,a1=1,a2=2,且an+1=(1+q)an-qan-1(n≥2,q≠0).
(1)设bn=an+1-an(n∈N*),证明{bn}是等比数列;    (2)求数列{an}的通项公式;
(3)若a3是a6与a9的等差中项,求q的值,并证明:对任意的n∈N*,an是an+3与an+6的等差中项.

登录并查看解析

已知数列{an}中,a1=1,a2=2,且an+1=(1+q