设椭圆 C : x 2 a 2 + y 2 b 2 = 1 a > b > 0 其相应于焦点 F 2 , 0 的准线方程为 x = 4 . (Ⅰ)求椭圆 C 的方程; (Ⅱ)已知过点 F 1 = - 2 , 0 倾斜角为 θ 的直线交椭圆 C 于 A , B 两点,求证: A B = 4 2 2 - cos 2 θ ; (Ⅲ)过点 F 1 - 2 , 0 作两条互相垂直的直线分别交椭圆 C 于 A , B 和 D , E ,求 A B + D E 的最小值
试题篮