2011年初中毕业升学考试(福建洛江区卷)数学
如图13,抛物线y=ax2+bx+c(a≠0)的顶点为(1,4),交x轴于A、B,交y轴于D,其中B点的坐标为(3,0)
(1)求抛物线的解析式
(2)如图14,过点A的直线与抛物线交于点E,交y轴于点F,其中E点的横坐标为2,若直线PQ为抛物线的对称轴,点G为PQ上一动点,则x轴上是否存在一点H,使D、G、F、H四点围成的四边形周长最小.若存在,求出这个最小值及G、H的坐标;若不存在,请说明理由.
(3)如图15,抛物线上是否存在一点T,过点T作x的垂线,垂足为M,过点M作直线MN∥BD,交线段AD于点N,连接MD,使△DNM∽△BMD,若存在,求出点T的坐标;若不存在,说明理由.
根据第六次全国人口普查的统计,截止到2010年11月1日零时,我国总人口约为1 370 000 000人,将1 370 000 000用科学记数法表示应为
A. | B. | C. | D. |
如图.将正方形纸片ABCD折叠,使边AB、CB均落在对角线BD上,得折痕BE、BF,则∠EBF的大小为
(A) 15° (B) 30° (C) 45° (D) 60°
已知⊙与⊙的半径分别为3 cm和4 cm,若="7" cm,则⊙与⊙的位置关系是
A.相交 | B.相离 | C.内切 | D.外切 |
下图是甲、乙两人l0次射击成绩(环数)的条形统计图.则下列说法正确的是
A.甲比乙的成绩稔定 | B.乙比甲的成绩稳定 |
C.甲、乙两人的成绩一样稳定 | D.无法确定谁的成绩更稳定 |
一家电信公司给顾客提供两种上网收费方式:方式A以每分0.1元的价格按上网所用时间计算;方式B除收月基费20元外.再以每分0.05元的价格按上网所用时间计费。若上网所用时间为x分.计费为y元,如图.是在同一直角坐标系中.分别描述两种计费方式的函救的图象,有下列结论:
①图象甲描述的是方式A:
②图象乙描述的是方式B;
③当上网所用时间为500分时,选择方式B省钱.
其中,正确结论的个数是
A.3 | B.2 | C.1 | D.0 |
若实数x,y,z满足,则下列式子一定成立的是( )
A.x+y+z=0 | B.x+y-2z=0 | C.y+z-2x=0 | D.z+x-2y=0 |
已知一次函数的图象经过点(0.1).且满足y随x的增大而增大,则该一次函数的解析式可以为__________ (写出一一个即可).
如图,点D、E、F分别是△ABC的边AB,BC、CA的中点,连接DE、EF、FD.则图中平行四边形的个数为__________。
如图,AD,AC分别是⊙O的直径和弦.且∠CAD=30°.OB⊥AD,交AC于点B.若OB=5,则BC的长等于_________。
如图,六边形ABCDEF的六个内角都相等.若AB=1,BC=CD=3,DE=2,则这个六边形的周长等于_________。
如图,有一张长为5宽为3的矩形纸片ABCD,要通过适当的剪拼,得到一个与之面积相等的正方形.
(Ⅰ) 该正方形的边长为_________。(结果保留根号)
(Ⅱ) 现要求只能用两条裁剪线.请你设计一种裁剪的方法.在图中画出裁剪线,并简要说明剪拼的过程:_________。
(本小题8分)已知一次函数(b为常数)的图象与反比例函数(k为常数.且)的图象相交于点P(3.1).
(I) 求这两个函数的解析式;
(II) 当x>3时,试判断与的大小.井说明理由。
(本小题8分)在我市开展的“好书伴我成长”读书活动中,某中学为了解八年级300名学生读书情况,随机调查了八年级50名学生读书的册数.统计数据如下表所示:
(I) 求这50个样本数据的平均救,众数和中位数:
(Ⅱ) 根据样本数据,估计该校八年级300名学生在本次活动中读书多于2册的人数。
(本小题8分)已知AB与⊙O相切于点C,OA=OB.OA、OB与⊙O分别交于点D、E.
(I) 如图①,若⊙O的直径为8AB=10,求OA的长(结果保留根号);
(Ⅱ)如图②,连接CD、CE,-若四边形dODCE为菱形.求的值.
(本小题8分)某校兴趣小组坐游轮拍摄海河两岸美景.如图,游轮出发点A与望海楼B的距离为300 m.在一处测得望海校B位于A的北偏东30°方向.游轮沿正北方向行驶一段时间后到达C.在C处测得望海楼B位于C的北偏东60°方向.求此时游轮与望梅楼之间的距离BC (取l.73.结果保留整数).
(本小题8分)注意:为了使同学们更好她解答本题,我们提供了—种分析问题的方法,你可以依照这个方法按要求完成本题的解答.也可以选用其他方法,按照解答题的一班要求进行解答即可.
某商品现在的售价为每件35元.每天可卖出50件.市场调查反映:如果调整价格.每降价1元,每天可多卖出2件.请你帮助分析,当每件商品降价多少元时,可使每天的销售额最大,最大销售额是多少?设每件商品降价x元.每天的销售额为y元.
(I) 分析:根据问题中的数量关系.用含x的式子填表:
(Ⅱ) (由以上分析,用含x的式子表示y,并求出问题的解)
(本小题10分)在平面直角坐标系中.已知O坐标原点.点A(3.0),B(0,4).以点A为旋转中心,把△ABO顺时针旋转,得△ACD.记旋转转角为α.∠ABO为β.
(I) 如图①,当旋转后点D恰好落在AB边上时.求点D的坐标;
(Ⅱ) 如图②,当旋转后满足BC∥x轴时.求α与β之闻的数量关系;
(Ⅲ) 当旋转后满足∠AOD=β时.求直线CD的解析式(直接写出即如果即可),
(本小题10分)已知抛物线:.点F(1,1).
(Ⅰ) 求抛物线的顶点坐标;
(Ⅱ)
①若抛物线与y轴的交点为A.连接AF,并延长交抛物线于点B,求证:
②抛物线上任意一点P())().连接PF.并延长交抛物线于点Q(),试判断是否成立?请说明理由;
(Ⅲ) 将抛物线作适当的平移.得抛物线:,若时.
恒成立,求m的最大值.
如图,某运动员P从半圆跑道的A点出发沿匀速前进到达终点B,若以时间t为自变量,扇形OAP的面积S为函数的图象大致是( )
如图a是长方形纸带,∠DEF=20°,将纸带沿EF折叠成图b,再沿BF折叠成图c,则图c中的∠CFE的度数是( )
A.110° | B.120° | C.140° | D.150° |
将一张长方形的纸对折,如图所示可得到一条折痕(图中虚线),继续对折,对折时每次折痕与上次的折痕保持平行,连续对折三次后,可以得7条折痕,那么对折四次可以得到 条折痕,如果对折次,可以得到 条折痕.
某课题小组为了了解某品牌电动自行车的销售情况,对某专卖店第一季
度该品牌A、B、C、D四种型号的销售做了统计,绘制成如下两幅统计图(均不完整)。
(1)该店第一季度售出这种品牌的电动自行车共多少辆?
(2)求出第一季度C型号的销售量和A、D两型号销售量所占的百分比,并把两幅统计图补充完整;
(3)若该专卖店计划订购这四款型号的电动自行车1800辆,求C型号电动自行车应订购多少辆?
如图,已知点B、E、C、F在同一直线上,AB=DE,∠A=∠D,AC∥DF.
求证:(1)△ABC≌△DEF; (2)BE=CF
如图,把一个转盘分成四等份,依次标上数字:1,2,3,4,若连续自
由转动转盘二次,指针指向的数字分别记作a,b,把a,b作为点A的横、纵坐标.
(1)用列表法或树状图表示出A(a,b)所有可能出现的结果;
(2)求点A(a,b)在函数的图象上的概率.
如图,正方形ABCD的边长为8,E是边AB上的一点,, EF⊥DE
交BC于点F.
(1)求的长;
(2)求的长.
某批发商以每件50元的价格购进800件T恤,第一个月以单价80元销售,售出了200件;第二个月如果单价不变,预计仍可售出200件,批发商为增加销售量,决定降价销售,根据市场调查,单价每降低1元,可多售出10件,但最低单价应高于购进的价格;第二个月结束后,批发商将对剩余的T恤一次性清仓销售,清仓是单价为40元,设第二个月单价降低元.
(1)填表:(不需化简)
(2)如果批发商希望通过销售这批T恤获利9000元,那么第二个月的单价应是多少元?
如图,面积为8的矩形ABOC的边OB、OC分别在轴、轴的正半
轴上,点A在双曲线的图象上,且AC=2.
(1)求值;
(2)将矩形ABOC以B旋转中心,顺时针旋转90°后得到矩形FBDE,双曲线交DE于M点,交EF于N点,求△MEN的面积.
(3)在双曲线上是否存在一点P,使得直线PN与直线BC平行?若存在,请求出P点坐标,若不存在,请说明理由.
如图所示,在平面直角坐标系中,抛物线经过A(-1,
0)、B(0,-5)、C(5,0).
(1)求此抛物线的表达式;
(2)若平行于轴的直线与此抛物线交于E、F两点,以线段EF为直径的圆与轴相切,
求该圆的半径;
(3)在点B、点C之间的抛物线上有点D,使的面积最大,求此时点D的坐标及
的面积.