[山东]2013届山东省高三高考压轴理科数学试卷
设p:log2x<0,q: x-1>1,则p是q的 ( ).
A.充要条件 | B.充分不必要条件 | C.必要不充分条件 | D.既不充分也不必要条件 |
已知函数,则其图象的下列结论中,正确的是( )
A.关于点中心对称 | B.关于直线轴对称 |
C.向左平移后得到奇函数 | D.向左平移后得到偶函数 |
我国第一艘航母“辽宁舰”在某次舰载机起降飞行训练中,有架舰载机准备着舰,如果甲、乙两机必须相邻着舰,而丙、丁两机不能相邻着舰,那么不同的着舰方法有( )
A. | B. | C. | D. |
若直线与圆有公共点,则实数a取值范围是( )
A.[-3,-1] | B.[-1,3] | C.[-3,l ] | D.(-∞,-3] [1.+∞)] |
已知、、是三条不同的直线,、、是三个不同的平面,给出以下命题:
①若,则; ②若,则;③若,,则;④若,,则.
其中正确命题的序号是( )
A.②④ | B.②③ | C.③④ | D.①③ |
已知抛物线y2=4x的准线过双曲线-=1(a>0,b>0)的左顶点,且此双曲线的一条渐
近线方程为y=2x,则双曲线的焦距等于 ( ).
A. | B.2 | C. | D.2 |
右图是一个几何体的正(主)视图和侧(左)视图,其俯视图是面积为的矩形.则该几何体的表面积是( )
A. | B. |
C.8 | D.16 |
定义平面向量之间的一种运算“⊙”如下:对任意的a=(m,n),b=(p,q),令a⊙b= mq
-np,下面说法错误的是( )
A.若a与b共线,则a⊙b =0 | B.a⊙b =b⊙a |
C.对任意的R,有(a)⊙b =(a⊙b) | D.(a⊙b)2+(a·b)2= |a|2|b|2 |
某校对高三年级的学生进行体检,现将高三男生的体重(单位:kg)数据进行整理后分成六组,并绘制频率分布直方图(如图).已知图中从左到右第一、第六小组的频率分别为0.16,0.07,第一、第二、第三小组的频率成等比数列,第三、第四、第五、第六小组的频率成等差数列,且第三小组的频数为100,则该校高三年级的男生总数为
给定方程:,下列命题中:①该方程没有小于0的实数解;②该方程有无数个实数解;③该方程在(–∞,0)内有且只有一个实数解;④若是该方程的实数解,则–1.则正确命题是 .
已知,,且.
(1)将表示为的函数,并求的单调增区间;
(2)已知分别为的三个内角对应的边长,若,且,,求的面积.
“中国式过马路”存在很大的交通安全隐患.某调
查机构为了解路人对“中国式过马路”的态度是否与性别有关,从马路旁随机抽取30名路
人进行了问卷调查,得到了如下列联表:
|
男性 |
女性 |
合计 |
反感 |
10 |
|
|
不反感 |
|
8 |
|
合计 |
|
|
30 |
已知在这30人中随机抽取1人抽到反感“中国式过马路”的路人的概率是.
(Ⅰ)请将上面的列联表补充完整(在答题卡上直接填写结果,不需要写求解过程),并据此资料分析反感“中国式过马路”与性别是否有关?
(Ⅱ)若从这30人中的女性路人中随机抽取2人参加一活动,记反感“中国式过马路”的人数为X,求X的分布列和数学期望.
如图,在四棱锥P-ABCD中,底面是边长为2的菱形,且∠BAD=120°,且PA⊥平面ABCD,PA=,M,N分别为PB,PD的中点.
(1)证明:MN∥平面ABCD;
(2) 过点A作AQ⊥PC,垂足为点Q,求二面角A-MN-Q的平面角的余弦值.
如图,设椭圆的中心为原点O,长轴在x轴上,上顶点为A,左、右焦点分别为F1,F2,线段OF1,OF2的中点分别为B1,B2,且△AB1B2是面积为4的直角三角形.
(1)求该椭圆的离心率和标准方程;
(2)过B1作直线l交椭圆于P,Q两点,使PB2⊥QB2,求直线l的方程.