[福建]2012届福建省福州市高三质量检测理科数学
命题“x∈,ex > 0”的否定是
A.x∈,ex ≤0 | B.x∈,ex ≤0 |
C.x∈,ex > 0 | D.x∈,ex < 0 |
如果执行如图所示的框图,输入如下四个复数:
①z=i; ②z=-+i;③z=+i; ④z=-i .那么输出的复数是
A.① | B.② | C.③ | D.④ |
用m、n表示两条不同的直线,仪表示平面,则下列命题正确的是
A.若m∥n,nα,则m∥α | B.若m∥α,nα,则m∥n |
C.若m⊥n,nα,则m⊥α | D.若m⊥α,nα,则m⊥n |
设随机变量ξ服从正态分布N(1,σ 2 ),则函数f(x)=x2+2x+ξ不存在零点的概率为
A. | B. | C. | D. |
在△ABC中.点O在线段BC的延长线上。且与点C不重合,若=x+(1-x),则实数x的取值范围是
A.(-∞,0) | B.(0,+∞) | C.(-1,0) | D.(0,1) |
如图所示2×2方格,在每一个方格中填人一个数字,数字可以是l、2、3、4中的任何一个,允许重复.若填入A方格的数字大于B方格的数字,则不同的填法共有
A.192种 | B.128种 | C.96种 | D.12种 |
函数f(x)=2cos(ωx+φ)(ω>0,0<φ<π)为奇函数,该函数的部分图象如图所示,点A、B分别为该部分图象的最高点与最低点,且这两点间的距离为4,则函数f(x)图象的一条对称轴的方程为
A、x= B、x= C、x=4 D、x=2
过双曲线=1(a>0,b>0)的左焦点F引圆x2+y2=a2的切线,切点为T,延长FT交双曲线右支于点P,若T为线段FP的中点,则该双曲线的渐近线方程为
A.x±y=0 | B.2x±y=0 | C.4x±y="0" | D.x±2y=0 |
若将有理数集Q分成两个非空的子集M与N,且满足M∪N=Q,M∩N=,M中的每一个元素都小于N中的每一个元素,则称(M,N)为有理数集的一个分割.试判断,对于有理数集的任一分割(M,N) ,下列选项中,不可能成立的是
A.M没有最大元素,N有一个最小元素 | B.M没有最大元素,N也没有最小元素 |
C.M有一个最大元素,N有一个最小元素 | D.M有一个最大元素,N没有最小元素 |
函数f(x)=x3+ax(x∈)在x=l处有极值,则曲线y= f(x)在原点处的切线方程是_____
在约束条件下,目标函数z=ax+by(a>0,b>0)的最大值为1,则ab的最大值等于_______
设函数f(x)= (x∈Z).给出以下三个判断:①f(x)为偶函数;②f(x)为周期函数;③f(x+1)+ f(x)=1.其中正确判断的序号是________(填写所有正确判断的序号).
一个平面图由若干顶点与边组成,各顶点用一串从1开始的连续自然数进行编号,记各边的编号为它的两个端点的编号差的绝对值,若各条边的编号正好也是一串从1开始的连续自然数,则称这样的图形为“优美图”.已知图15是“优美图”,则点A、B与边a所对应的三个数分别为___________
(本小题满分13分)
在数列{a n}中,a1=2,点(a n,a n+1)(n∈N*)在直线y=2x上.
(Ⅰ)求数列{ a n }的通项公式;
(Ⅱ)若bn=log2 an,求数列的前n项和Tn.
(本小题满分13分)
假设某班级教室共有4扇窗户,在每天上午第三节课上课预备铃声响起时,每扇窗户或被敞开或被关闭,且概率均为0.5,记此时教室里敞开的窗户个数为X .
(Ⅰ)求X的分布列;
(Ⅱ)若此时教室里有两扇或两扇以上的窗户被关闭,班长就会将关闭的窗户全部敞开,否则维持原状不变.记每天上午第三节课上课时该教室里敞开的窗户个数为y,求y的数学期望.
.(本小题满分13分)
如图,椭圆 (a>b>0)的上、下顶点分别为A、B,已知点B在直线l:y=-1上,且椭圆的离心率e =.(Ⅰ)求椭圆的标准方程;
(Ⅱ)设P是椭圆上异于A、B的任意一点,PQ⊥y轴,Q为垂足,M为线段PQ中点,直线AM交直线l于点C,N为线段BC的中点,求证:OM⊥MN
.(本小题满分l 4分)
如图,在边长为4的菱形ABCD中,∠DAB=60°.点E、F分别在边CD、CB上,点E与点C、D不重合,EF⊥AC,EF∩AC=O.沿EF将△CEF翻折到△PEF的位置,使平面PEF⊥平面ABFED.
(Ⅰ)求证:BD⊥平面POA;
(Ⅱ)当PB取得最小值时,请解答以下问题:
(i)求四棱锥P-BDEF的体积;
(ii)若点Q满足=λ (λ >0),试探究:直线OQ与平面PBD所成角的大小是否一定大于?并说明理由.
(本小题满分1 3分)
如图①,一条宽为l km的两平行河岸有村庄A和供电站C,村庄B与A、C的直线距离都是2km,BC与河岸垂直,垂足为D.现要修建电缆,从供电站C向村庄A、B供电.修建地下电缆、水下电缆的费用分别是2万元/km、4万元/km.
(Ⅰ)已知村庄A与B原来铺设有旧电缆仰,需要改造,旧电缆的改造费用是0.5万元/km.现
决定利用旧电缆修建供电线路,并要求水下电缆长度最短,试求该方案总施工费用的最小值.
(Ⅱ)如图②,点E在线段AD上,且铺设电缆的线路为CE、EA、EB.若∠DCE="θ" (0≤θ≤),试用θ表示出总施工费用y(万元)的解析式,并求y的最小值.
)(本小题满分7分)选修4—4:坐标系与参数方程
在平面直角坐标系xOy中,以O为极点,x轴正半轴为极轴建立极坐标系,直线l的极坐标方程为ρ(cosθ+sinθ)=1.圆的参数方程为(θ为参数,r >0),若直线l与圆C相切,求r的值.