2017年山东省东营市中考数学试卷
小明从家到学校,先匀速步行到车站,等了几分钟后坐上了公交车,公交车沿着公路匀速行驶一段时间后到达学校,小明从家到学校行驶路程 与时间 的大致图象是
A.B.
C.D.
如图,共有12个大小相同的小正方形,其中阴影部分的5个小正方形是一个正方体的表面展开图的一部分,现从其余的小正方形中任取一个涂上阴影,能构成这个正方体的表面展开图的概率是
A. B. C. D.
如图,把 沿着 的方向平移到 的位置,它们重叠部分的面积是 面积的一半,若 ,则 移动的距离是
A. B. C. D.
如图,在正方形 中, 是等边三角形, 、 的延长线分别交 于点 、 ,连接 、 , 与 相交于点 ,给出下列结论:
① ;② ;③ ;④
其中正确的是
A.①②③④B.②③C.①②④D.①③④
《“一带一路”贸易合作大数据报告 》以“一带一路”贸易合作现状分析和趋势预测为核心,采集调用了8000多个种类,总计1.2亿条全球进出口贸易基础数据 ,1.2亿用科学记数法表示为 .
为选拔一名选手参加全国中学生游泳锦标赛自由泳比赛,我市四名中学生参加了男子100米自由泳训练,他们成绩的平均数 及其方差 如下表所示:
甲 |
乙 |
丙 |
丁 |
|
|
|
|
|
|
|
1.1 |
1.1 |
1.3 |
1.6 |
如果选拔一名学生去参赛,应派 去.
如图, 是半圆直径,半径 于点 , 为半圆上一点, , 与 交于点 ,连接 、 ,给出以下三个结论:① 平分 ;② ;③ ,其中正确结论的序号是 .
我国古代有这样一道数学问题:“枯木一根直立地上,高二丈,周三尺,有葛藤自根缠绕而上,五周而达其顶,问葛藤之长几何?”题意是:如图所示,把枯木看作一个圆柱体,因一丈是十尺,则该圆柱的高为20尺,底面周长为3尺,有葛藤自点 处缠绕而上,绕五周后其末端恰好到达点 处,则问题中葛藤的最短长度是 尺.
一数学兴趣小组来到某公园,准备测量一座塔的高度.如图,在 处测得塔顶的仰角为 ,在 处测得塔顶的仰角为 ,又测量出 、 两点的距离为 米,则塔高为 米.
如图,在平面直角坐标系中,直线 与 轴交于点 ,以 为边长作等边三角形 ,过点 作 平行于 轴,交直线 于点 ,以 为边长作等边三角形 ,过点 作 平行于 轴,交直线 于点 ,以 为边长作等边三角形 , ,则点 的横坐标是 .
为大力弘扬“奉献、友爱、互助、进步”的志愿服务精神,传播“奉献他人、提升自我”的志愿服务理念,东营市某中学利用周末时间开展了“助老助残、社区服务、生态环保、网络文明”四个志愿服务活动(每人只参加一个活动),九年级某班全班同学都参加了志愿服务,班长为了解志愿服务的情况,收集整理数据后,绘制以下不完整的统计图,请你根据统计图中所提供的信息解答下列问题:
(1)求该班的人数;
(2)请把折线统计图补充完整;
(3)求扇形统计图中,网络文明部分对应的圆心角的度数;
(4)小明和小丽参加了志愿服务活动,请用树状图或列表法求出他们参加同一服务活动的概率.
如图,在 中, ,以 为直径的 交 于点 ,过点 作 的切线 ,交 于点 , 的反向延长线交 于点 .
(1)求证: ;
(2)若 , 的半径为10,求 的长度.
如图,一次函数 的图象与坐标轴分别交于 、 两点,与反比例函数 的图象在第一象限的交点为 , 轴,垂足为 ,若 , , 的面积为3.
(1)求一次函数与反比例函数的解析式;
(2)直接写出当 时, 的解集.
为解决中小学大班额问题,东营市各县区今年将改扩建部分中小学,某县计划对 、 两类学校进行改扩建,根据预算,改扩建2所 类学校和3所 类学校共需资金7800万元,改扩建3所 类学校和1所 类学校共需资金5400万元.
(1)改扩建1所 类学校和1所 类学校所需资金分别是多少万元?
(2)该县计划改扩建 、 两类学校共10所,改扩建资金由国家财政和地方财政共同承担.若国家财政拨付资金不超过11800万元;地方财政投入资金不少于4000万元,其中地方财政投入到 、 两类学校的改扩建资金分别为每所300万元和500万元.请问共有哪几种改扩建方案?
如图,在等腰三角形 中, , ,点 是 边上的一个动点(不与 、 重合),在 上取一点 ,使 .
(1)求证: ;
(2)设 , ,求 关于 的函数关系式并写出自变量 的取值范围;
(3)当 是等腰三角形时,求 的长.