2016年黑龙江省大兴安岭中考数学试卷
九年级一班和二班每班选8名同学进行投篮比赛,每名同学投篮10次,对每名同学投中的次数进行统计,甲说:"一班同学投中次数为6个的最多"乙说:"二班同学投中次数最多与最少的相差6个."上面两名同学的议论能反映出的统计量是( )
A. |
平均数和众数 |
B. |
众数和极差 |
C. |
众数和方差 |
D. |
中位数和极差 |
下列算式
① ;② ;③2 6÷2 3=4;④ ;⑤ a+ a= a 2.
运算结果正确的概率是( )
A. |
|
B. |
|
C. |
|
D. |
|
下列命题中,真命题的个数是( )
①同位角相等
②经过一点有且只有一条直线与这条直线平行
③长度相等的弧是等弧
④顺次连接菱形各边中点得到的四边形是矩形.
A. |
1个 |
B. |
2个 |
C. |
3个 |
D. |
4个 |
点 P( x, y)在第一象限内,且 x+ y=6,点 A的坐标为(4,0).设△ OPA的面积为 S,则下列图象中,能正确反映面积 S与 x之间的函数关系式的图象是( )
A. | B. | ||
C. | D. |
若关于 x的分式方程 的解为正数,则满足条件的正整数 m的值为( )
A. |
1,2,3 |
B. |
1,2 |
C. |
1,3 |
D. |
2,3 |
足球比赛规定:胜一场得3分,平一场得1分,负一场得0分.某足球队共进行了6场比赛,得了12分,该队获胜的场数可能是( )
A. |
1或2 |
B. |
2或3 |
C. |
3或4 |
D. |
4或5 |
如图是由一些完全相同的小正方体搭成的几何体的主视图和左视图,组成这个几何体的小正方体的个数最少是( )
A. |
5个 |
B. |
6个 |
C. |
7个 |
D. |
8个 |
如图,抛物线 y= ax 2+ bx+ c( a≠0)的对称轴为直线 x=1,与 x轴的一个交点坐标为(﹣1,0),其部分图象如图所示,下列结论:
①4 ac< b 2;
②方程 ax 2+ bx+ c=0的两个根是 x 1=﹣1, x 2=3;
③3 a+ c>0
④当 y>0时, x的取值范围是﹣1≤ x<3
⑤当 x<0时, y随 x增大而增大
其中结论正确的个数是( )
A. |
4个 |
B. |
3个 |
C. |
2个 |
D. |
1个 |
某种电子元件的面积大约为0.00000069平方毫米,将0.00000069这个数用科学记数法表示为 .
如图,平行四边形 ABCD的对角线 AC, BD相交于点 O,请你添加一个适当的条件 使其成为菱形(只填一个即可).
如图,已知点 P(6,3),过点 P作 PM⊥ x轴于点 M, PN⊥ y轴于点 N,反比例函数 的图象交 PM于点 A,交 PN于点 B.若四边形 OAPB的面积为12,则 k= .
如图,在边长为2的菱形 ABCD中,∠ A=60°,点 M是 AD边的中点,连接 MC,将菱形 ABCD翻折,使点 A落在线段 CM上的点 E处,折痕交 AB于点 N,则线段 EC的长为 .
如图,在平面直角坐标系中,矩形 AOCB的两边 OA、 OC分别在 x轴和 y轴上,且 OA=2, OC=1.在第二象限内,将矩形 AOCB以原点 O为位似中心放大为原来的 倍,得到矩形 A 1 OC 1 B 1,再将矩形 A 1 OC 1 B 1以原点 O为位似中心放大 倍,得到矩形 A 2 OC 2 B 2…,以此类推,得到的矩形 A n O∁ n B n的对角线交点的坐标为 .
如图,平面直角坐标系内,小正方形网格的边长为1个单位长度,△ ABC的三个顶点的坐标分别为 A(﹣1,3), B(﹣4,0), C(0,0)
(1)画出将△ ABC向上平移1个单位长度,再向右平移5个单位长度后得到的△ A 1 B 1 C 1;
(2)画出将△ ABC绕原点 O顺时针方向旋转90°得到△ A 2 B 2 O;
(3)在 x轴上存在一点 P,满足点 P到 A 1与点 A 2距离之和最小,请直接写出 P点的坐标.
如图,对称轴为直线 x=2的抛物线 y= x 2+ bx+ c与 x轴交于点 A和点 B,与 y轴交于点 C,且点 A的坐标为(﹣1,0)
(1)求抛物线的解析式;
(2)直接写出 B、 C两点的坐标;
(3)求过 O, B, C三点的圆的面积.(结果用含π的代数式表示)
注:二次函数 y= ax 2+ bx+ c( a≠0)的顶点坐标为( )
如图,在△ ABC中, AD⊥ BC, BE⊥ AC,垂足分别为 D, E, AD与 BE相交于点 F.
(1)求证:△ ACD∽△ BFD;
(2)当tan∠ ABD=1, AC=3时,求 BF的长.
为增强学生体质,各学校普遍开展了阳光体育活动,某校为了解全校1000名学生每周课外体育活动时间的情况,随机调查了其中的50名学生,对这50名学生每周课外体育活动时间 x(单位:小时)进行了统计.根据所得数据绘制了一幅不完整的统计图,并知道每周课外体育活动时间在6≤ x<8小时的学生人数占24%.根据以上信息及统计图解答下列问题:
(1)本次调查属于 调查,样本容量是 ;
(2)请补全频数分布直方图中空缺的部分;
(3)求这50名学生每周课外体育活动时间的平均数;
(4)估计全校学生每周课外体育活动时间不少于6小时的人数.
有一科技小组进行了机器人行走性能试验,在试验场地有 A、 B、 C三点顺次在同一笔直的赛道上,甲、乙两机器人分别从 A、 B两点同时同向出发,历时7分钟同时到达 C点,乙机器人始终以60米/分的速度行走,如图是甲、乙两机器人之间的距离 y(米)与他们的行走时间 x(分钟)之间的函数图象,请结合图象,回答下列问题:
(1) A、 B两点之间的距离是 米,甲机器人前2分钟的速度为 米/分;
(2)若前3分钟甲机器人的速度不变,求线段 EF所在直线的函数解析式;
(3)若线段 FG∥ x轴,则此段时间,甲机器人的速度为 米/分;
(4)求 A、 C两点之间的距离;
(5)若前3分钟甲机器人的速度不变,直接写出两机器人出发多长时间相距28米.