2020年辽宁省朝阳市中考数学试卷
某品牌衬衫进价为120元,标价为240元,商家规定可以打折销售,但其利润率不能低于 ,则这种品牌衬衫最多可以打几折?
A. |
8 |
B. |
6 |
C. |
7 |
D. |
9 |
某书店与一山区小学建立帮扶关系,连续6个月向该小学赠送书籍的数量分别如下(单位:本) ,200,200,300,300,500这组数据的众数、中位数、平均数分别是
A. |
300,150,300 |
B. |
300,200,200 |
C. |
600,300,200 |
D. |
300,300,300 |
如图,四边形 是矩形,点 是 边上的动点(点 与点 、点 不重合),则 的值为
A. |
1 |
B. |
|
C. |
2 |
D. |
无法确定 |
如图,在平面直角坐标系中,一次函数 的图象与 轴、 轴分别相交于点 ,点 ,以线段 为边作正方形 ,且点 在反比例函数 的图象上,则 的值为
A. |
|
B. |
|
C. |
42 |
D. |
|
某体育用品商店出售毽球,有批发和零售两种售卖方式,小明打算为班级购买键球,如果给每个人买一个毽球,就只能按零售价付款,共需80元;如果小明多购买5个毽球,就可以享受批发价,总价是72元.已知按零售价购买40个毽球与按批发价购买50个毽球付款相同,则小明班级共有多少名学生?设班级共有 名学生,依据题意列方程得
A. |
|
B. |
|
C. |
|
D. |
|
如图,在正方形 中,对角线 , 相交于点 ,点 在 边上,且 ,连接 交 于点 ,过点 作 于点 ,连接 并延长,交 于点 ,过点 作 交 于点 , ,现给出下列结论:① ;② ;③ ;④ ;其中正确的结论有
A. |
①②③ |
B. |
②③④ |
C. |
①②④ |
D. |
①③④ |
在全国上下众志成城抗疫情、保生产、促发展的关键时刻,三峡集团2月24日宣布:在广东、江苏等地投资580亿元,开工建设25个新能源项目,预计提供17万个就业岗位将“580亿元”用科学记数法表示为 元.
临近中考,报考体育专项的同学利用课余时间紧张地训练,甲、乙两名同学最近20次立定跳远成绩的平均值都是 ,方差分别是: , ,这两名同学成绩比较稳定的是 (填“甲”或“乙” .
如图,点 , , 是 上的点,连接 , , ,且 ,过点 作 交 于点 ,连接 , ,已知 半径为2,则图中阴影面积为 .
如图,动点 从坐标原点 出发,以每秒一个单位长度的速度按图中箭头所示方向运动,第1秒运动到点 ,第2秒运动到点 ,第3秒运动到点 ,第4秒运动到点 则第2068秒点 所在位置的坐标是 .
如图所示的平面直角坐标系中, 的三个顶点坐标分别为 , , ,请按如下要求画图:
(1)以坐标原点 为旋转中心,将 顺时针旋转 ,得到△ ,请画出△ ;
(2)以坐标原点 为位似中心,在 轴下方,画出 的位似图形△ ,使它与 的位似比为 .
由于疫情的影响,学生不能返校上课,某校在直播授课的同时还为学生提供了四种辅助学习方式: 网上自测, 网上阅读, 网上答疑, 网上讨论.为了解学生对四种学习方式的喜欢情况,该校随机抽取部分学生进行问卷调查,规定被调查学生从四种方式中选择自己最喜欢的一种,根据调查结果绘制成如图两幅不完整的统计图:
根据统计图提供的信息,解答下列问题:
(1)本次共调查了 名学生;
(2)在扇形统计图中, 的值是 , 对应的扇形圆心角的度数是 ;
(3)请补全条形统计图;
(4)若该校共有2000名学生,根据抽样调查的结果,请你估计该校最喜欢方式 的学生人数.
某校准备组建"校园安全宣传队",每班有两个队员名额,七年2班有甲、乙、丙、丁四位同学报名,这四位同学综合素质都很好,王老师决定采取抽签的方式确定人选.具体做法是:将甲、乙、丙、丁四名同学分别编号为1、2、3、4号,将号码分别写在4个大小、质地、形状、颜色均无差别的小球上,然后把小球放入不透明的袋子中,充分搅拌均匀后,王老师从袋中随机摸出两个小球,根据小球上的编号确定本班"校园安全宣传员"人选.
(1)用画树状图或列表法,写出"王老师从袋中随机摸出两个小球"可能出现的所有结果.
(2)求甲同学被选中的概率.
为了丰富学生的文化生活,学校利用假期组织学生到红色文化基地 和人工智能科技馆 参观学习如图,学校在点 处, 位于学校的东北方向, 位于学校南偏东 方向, 在 的南偏西 方向 处.学生分成两组,第一组前往 地,第二组前往 地,两组同学同时从学校出发,第一组乘客车,速度是 ,第二组乘公交车,速度是 ,两组同学到达目的地分别用了多长时间?哪组同学先到达目的地?请说明理由(结果保留根号).
如图,以 为直径的 经过 的顶点 ,过点 作 交 于点 ,交 于点 ,连接 交 于点 ,连接 ,在 的延长线上取一点 ,连接 ,使 .
(1)求证: 是 的切线;
(2)若 的半径是3, ,求 的长.
某公司销售一种商品,成本为每件30元,经过市场调查发现,该商品的日销售量 (件 与销售单价 (元 是一次函数关系,其销售单价、日销售量的三组对应数值如下表:
销售单价 (元) |
40 |
60 |
80 |
日销售量 (件) |
80 |
60 |
40 |
(1)直接写出 与 的关系式 ;
(2)求公司销售该商品获得的最大日利润;
(3)销售一段时间以后,由于某种原因,该商品每件成本增加了10元,若物价部门规定该商品销售单价不能超过 元,在日销售量 (件 与销售单价 (元 保持(1)中函数关系不变的情况下,该商品的日销售最大利润是1500元,求 的值.
如图,在 中, , , 是 边上的一点,连接 ,作 于点 ,过点 作 的垂线交 的延长线于点 .
(1)如图1,求证: ;
(2)如图2,以 , 为邻边作平行四边形 ,连接 交 于点 ,连接 ,求 的值;
(3)如图3,若 是 的中点,以 , 为邻边作平行四边形 ,连接 交 于点 ,连接 ,经探究发现 ,请直接写出 的值.