2015年全国普通高等学校招生统一考试理科数学
根据下面给出的2004年至2013年我国二氧化硫排放量(单位:万吨)柱形图。以下结论不正确的是()
A. | 逐年比较,2008年减少二氧化硫排放量的效果最显著 |
B. | 2007年我国治理二氧化硫排放显现 |
C. | 2006年以来我国二氧化硫年排放量呈减少趋势 |
D. | 2006年以来我国二氧化硫年排放量与年份正相关 |
一个正方体被一个平面截去一部分后,剩余部分的三视图如右图,则截去部分体积与剩余部分体积的比值为()
A. | B. | C. | D. |
右边程序框图的算法思路源于我国古代数学名著《九章算术》中的"更相减损术".执行该程序框图,若输入分别为,则输出的
如图,长方形的边,,是的中点,点沿着边,与运动,记.将动到、两点距离之和表示为的函数,则的图像大致为()
A. | B. | ||
C. | D. |
已知 为双曲线 的左,右顶点,点 在 上, 为等腰三角形,且顶角为 ,则 的离心率为()
A. | B. | 2 | C. | D. |
某公司为了解用户对其产品的满意度,从,两地区分别随机调查了20个用户,得到用户对产品的满意度评分如下:
地区:62 73 81 92 95 85 74 64 53 76
78 86 95 66 97 78 88 82 76 89
地区:73 83 62 51 91 46 53 73 64 82
93 48 65 81 74 56 54 76 65 79
(Ⅰ)根据两组数据完成两地区用户满意度评分的茎叶图,并通过茎叶图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,得出结论即可);
(Ⅱ)根据用户满意度评分,将用户的满意度从低到高分为三个等级:
满意度评分 |
低于70分 |
70分到89分 |
不低于90分 |
满意度等级 |
不满意 |
满意 |
非常满意 |
记时间:"地区用户的满意度等级高于地区用户的满意度等级".假设两地区用户的评价结果相互独立.根据所给数据,以事件发生的频率作为相应事件发生的概率,求的概率.
如图,长方体中,,点分别在上,.过点的平面与此长方体的面相交,交线围成一个正方形.
(Ⅰ)在图中画出这个正方形(不必说出画法和理由);
(Ⅱ)求直线与平面所成角的正弦值.
已知椭圆
,直线
不过原点
且不平行于坐标轴,
与
有两个交点
,线段
的中点为
.
(Ⅰ)证明:直线
的斜率与
的斜率的乘积为定值;
(Ⅱ)若
过点
,延长线段
与
交于点
,四边形
能否为平行四边形?若能,求此时
的斜率,若不能,说明理由.
选修4-1:几何证明选讲
如图,为等腰三角形内一点,圆与的底边交于、两点与底边上的高交于点,与、分别相切于、两点.
(Ⅰ)证明:;
(Ⅱ) 若等于的半径,且,求四边形的面积.
在直角坐标系中,曲线(为参数,),其中,在以为极点,轴正半轴为极轴的极坐标系中,曲线,曲线.
(Ⅰ)求与交点的直角坐标;
(Ⅱ)若与相交于点,与相交于点,求的最大值.