设数列 A : a 1 , a 2 , … a N ( N ≥ ) .如果对小于 n ( 2 ≤ n ≤ N ) , 的每个正整数 k 都有 a k < a n 则称 n 是数列 A 的一个 " G 时刻" , 记 G ( A ) 是数列 A 的所有 " G 时刻" 组成的集合.
(1)对数列 A: - 2 , 2 , - 1 , 1 , 3 , 写出 G ( A ) 的所有元素;
(2)证明:若数列 A 中存在 a n 使得 a n > a 1 , 则 G ( A ) ≠ ∅ ;
(3)证明:若数列 A 满足 a n - a n - 1 ≤ ( n = 2 , 3 , … , N ) 则G(A)的元素个数小于 a N - a 1 ;
试题篮