在直角坐标系中,设函数 y = a x 2 + bx + 1 ( a , b 是常数, a ≠ 0 ) .
(1)若该函数的图象经过 ( 1 , 0 ) 和 ( 2 , 1 ) 两点,求函数的表达式,并写出函数图象的顶点坐标;
(2)写出一组 a , b 的值,使函数 y = a x 2 + bx + 1 的图象与 x 轴有两个不同的交点,并说明理由.
(3)已知 a = b = 1 ,当 x = p , q ( p , q 是实数, p ≠ q ) 时,该函数对应的函数值分别为 P , Q .若 p + q = 2 ,求证: P + Q > 6 .
试题篮