如图,已知抛物线 y = a x 2 + bx + 4 ( a ≠ 0 ) 与 x 轴交于点 A ( 1 , 0 ) 和 B ,与 y 轴交于点 C ,对称轴为直线 x = 5 2 .
(1)求抛物线的解析式;
(2)如图1,若点 P 是线段 BC 上的一个动点(不与点 B , C 重合),过点 P 作 y 轴的平行线交抛物线于点 Q ,连接 OQ ,当线段 PQ 长度最大时,判断四边形 OCPQ 的形状并说明理由;
(3)如图2,在(2)的条件下, D 是 OC 的中点,过点 Q 的直线与抛物线交于点 E ,且 ∠ DQE = 2 ∠ ODQ .在 y 轴上是否存在点 F ,得 ΔBEF 为等腰三角形?若存在,求点 F 的坐标;若不存在,请说明理由.
试题篮