如图,在矩形 ABCD 中, E 是边 AB 上一点, BE = BC , EF ⊥ CD ,垂足为 F .将四边形 CBEF 绕点 C 顺时针旋转 α ( 0 ° < α < 90 ° ) ,得到四边形 C B ' E ' F ' , B ' E ' 所在的直线分别交直线 BC 于点 G ,交直线 AD 于点 P ,交 CD 于点 K . E ' F ' 所在的直线分别交直线 BC 于点 H ,交直线 AD 于点 Q ,连接 B ' F ' 交 CD 于点 O .
(1)如图1,求证:四边形 BEFC 是正方形;
(2)如图2,当点 Q 和点 D 重合时.
①求证: GC = DC ;
②若 OK = 1 , CO = 2 ,求线段 GP 的长;
(3)如图3,若 BM / / F ' B ' 交 GP 于点 M , tan ∠ G = 1 2 ,求 S ΔGMB S △ CF ' H 的值.
试题篮