在等腰 ΔADE 中, AE = DE , ΔABC 是直角三角形, ∠ CAB = 90 ° , ∠ ABC = 1 2 ∠ AED ,连接 CD 、 BD ,点 F 是 BD 的中点,连接 EF .
(1)当 ∠ EAD = 45 ° ,点 B 在边 AE 上时,如图①所示,求证: EF = 1 2 CD ;
(2)当 ∠ EAD = 45 ° ,把 ΔABC 绕点 A 逆时针旋转,顶点 B 落在边 AD 上时,如图②所示,当 ∠ EAD = 60 ° ,点 B 在边 AE 上时,如图③所示,猜想图②、图③中线段 EF 和 CD 又有怎样的数量关系?请直接写出你的猜想,不需证明.
试题篮