已知抛物线 y = a x 2 + bx + c 与 x 轴只有一个公共点.
(1)若抛物线过点 P ( 0 , 1 ) ,求 a + b 的最小值;
(2)已知点 P 1 ( - 2 , 1 ) , P 2 ( 2 , - 1 ) , P 3 ( 2 , 1 ) 中恰有两点在抛物线上.
①求抛物线的解析式;
②设直线 l : y = kx + 1 与抛物线交于 M , N 两点,点 A 在直线 y = - 1 上,且 ∠ MAN = 90 ° ,过点 A 且与 x 轴垂直的直线分别交抛物线和 l 于点 B , C .求证: ΔMAB 与 ΔMBC 的面积相等.
试题篮