启教通信息平台
  首页 / 试题 / 高中数学 / 试题详细
  • 科目:数学
  • 题型:解答题
  • 难度:中等
  • 人气:81

已知 a R ,函数 f ( x ) = log 2 ( 1 x + a )

(1)当 a = 5 时,解不等式 f ( x ) > 0

(2)若关于 x 的方程 f ( x ) - log 2 [ ( a - 4 ) x + 2 a - 5 ] = 0 的解集中恰好有一个元素,求 a 的取值范围.

(3)设 a > 0 ,若对任意 t [ 1 2 1 ] ,函数 f ( x ) 在区间 [ t t + 1 ] 上的最大值与最小值的差不超过1,求 a 的取值范围.

登录并查看解析

已知a ∈ R,函数f ( x ) =log2(1x+ a