小敏思考解决如下问题:
原题:如图1,点 P , Q 分别在菱形 ABCD 的边 BC , CD 上, ∠ PAQ = ∠ B ,求证: AP = AQ .
(1)小敏进行探索,若将点 P , Q 的位置特殊化;把 ∠ PAQ 绕点 A 旋转得到 ∠ EAF ,使 AE ⊥ BC ,点 E , F 分别在边 BC , CD 上,如图2.此时她证明了 AE = AF ,请你证明.
(2)受以上(1)的启发,在原题中,添加辅助线:如图3,作 AE ⊥ BC , AF ⊥ CD ,垂足分别为 E , F .请你继续完成原题的证明.
(3)如果在原题中添加条件: AB = 4 , ∠ B = 60 ° ,如图1,请你编制一个计算题(不标注新的字母),并直接给出答案(根据编出的问题层次,给不同的得分).
试题篮