如图1,在直角坐标系 xoy 中,直线 l : y = kx + b 交 x 轴, y 轴于点 E , F ,点 B 的坐标是 ( 2 , 2 ) ,过点 B 分别作 x 轴、 y 轴的垂线,垂足为 A 、 C ,点 D 是线段 CO 上的动点,以 BD 为对称轴,作与 ΔBCD 成轴对称的△ BC ' D .
(1)当 ∠ CBD = 15 ° 时,求点 C ' 的坐标.
(2)当图1中的直线 l 经过点 A ,且 k = − 3 3 时(如图 2 ) ,求点 D 由 C 到 O 的运动过程中,线段 BC ' 扫过的图形与 ΔOAF 重叠部分的面积.
(3)当图1中的直线 l 经过点 D , C ' 时(如图 3 ) ,以 DE 为对称轴,作与 ΔDOE 成轴对称的△ DO ' E ,连接 O ' C , O ' O ,问是否存在点 D ,使得△ DO ' E 与△ CO ' O 相似?若存在,求出 k 、 b 的值;若不存在,请说明理由.
试题篮