启教通信息平台
  首页 / 试题 / 初中数学 / 试题详细
  • 科目:数学
  • 题型:计算题
  • 难度:较难
  • 人气:123

如图,抛物线 y = a x 2 + bx + c ( a 0 ) x 轴交于原点及点 A ,且经过点 B ( 4 , 8 ) ,对称轴为直线 x = - 2

(1)求抛物线的解析式;

(2)设直线 y = kx + 4 与抛物线两交点的横坐标分别为 x 1 x 2 ( x 1 < x 2 ) ,当 1 x 2 - 1 x 1 = 1 2 时,求 k 的值;

(3)连接 OB ,点 P x 轴下方抛物线上一动点,过点 P OB 的平行线交直线 AB 于点 Q ,当 S ΔPOQ : S ΔBOQ = 1 : 2 时,求出点 P 的坐标.

(坐标平面内两点 M ( x 1 y 1 ) N ( x 2 y 2 ) 之间的距离 MN = ( x 1 - x 2 ) 2 + ( y 1 - y 2 ) 2 )

登录并查看解析

如图,抛物线y = ax2+ bx + c ( a ≠ 0