已知,抛物线 y = a x 2 + bx + 3 ( a < 0 ) 与 x 轴交于 A ( 3 , 0 ) 、 B 两点,与 y 轴交于点 C ,抛物线的对称轴是直线 x = 1 , D 为抛物线的顶点,点 E 在 y 轴 C 点的上方,且 CE = 1 2 .
(1)求抛物线的解析式及顶点 D 的坐标;
(2)求证:直线 DE 是 ΔACD 外接圆的切线;
(3)在直线 AC 上方的抛物线上找一点 P ,使 S ΔACP = 1 2 S ΔACD ,求点 P 的坐标;
(4)在坐标轴上找一点 M ,使以点 B 、 C 、 M 为顶点的三角形与 ΔACD 相似,直接写出点 M 的坐标.
试题篮