启教通信息平台
  首页 / 试题 / 初中数学 / 试题详细
  • 科目:数学
  • 题型:解答题
  • 难度:较难
  • 人气:85

在平面直角坐标系 xOy 中,已知抛物线 y = a x 2 + bx + c x 轴交于 A ( - 1 , 0 ) B ( 4 , 0 ) 两点,与 y 轴交于点 C ( 0 , - 2 )

(1)求抛物线的函数表达式;

(2)如图1,点 D 为第四象限抛物线上一点,连接 AD BC 交于点 E ,连接 BD ,记 ΔBDE 的面积为 S 1 ΔABE 的面积为 S 2 ,求 S 1 S 2 的最大值;

(3)如图2,连接 AC BC ,过点 O 作直线 l / / BC ,点 P Q 分别为直线 l 和抛物线上的点.试探究:在第一象限是否存在这样的点 P Q ,使 ΔPQB ΔCAB .若存在,请求出所有符合条件的点 P 的坐标;若不存在,请说明理由.

登录并查看解析

在平面直角坐标系xOy 中,已知抛物线y = ax2+ bx