如图1,矩形 OABC 的顶点 A , C 的坐标分别为 ( 4 , 0 ) , ( 0 , 6 ) ,直线 AD 交 BC 于点 D , tan ∠ OAD = 2 ,抛物线 M 1 : y = a x 2 + bx ( a ≠ 0 ) 过 A , D 两点.
(1)求点 D 的坐标和抛物线 M 1 的表达式;
(2)点 P 是抛物线 M 1 对称轴上一动点,当 ∠ CPA = 90 ° 时,求所有符合条件的点 P 的坐标;
(3)如图2,点 E ( 0 , 4 ) ,连接 AE ,将抛物线 M 1 的图象向下平移 m ( m > 0 ) 个单位得到抛物线 M 2 .
①设点 D 平移后的对应点为点 D ' ,当点 D ' 恰好在直线 AE 上时,求 m 的值;
②当 1 ⩽ x ⩽ m ( m > 1 ) 时,若抛物线 M 2 与直线 AE 有两个交点,求 m 的取值范围.
试题篮