若三个非零实数 x , y , z 满足:只要其中一个数的倒数等于另外两个数的倒数的和,则称这三个实数 x , y , z 构成“和谐三组数”.
(1)实数1,2,3可以构成“和谐三组数”吗?请说明理由;
(2)若 M ( t , y 1 ) , N ( t + 1 , y 2 ) , R ( t + 3 , y 3 ) 三点均在函数 y = k x ( k 为常数, k ≠ 0 ) 的图象上,且这三点的纵坐标 y 1 , y 2 , y 3 构成“和谐三组数”,求实数 t 的值;
(3)若直线 y = 2 bx + 2 c ( bc ≠ 0 ) 与 x 轴交于点 A ( x 1 , 0 ) ,与抛物线 y = a x 2 + 3 bx + 3 c ( a ≠ 0 ) 交于 B ( x 2 , y 2 ) , C ( x 3 , y 3 ) 两点.
①求证: A , B , C 三点的横坐标 x 1 , x 2 , x 3 构成“和谐三组数”;
②若 a > 2 b > 3 c , x 2 = 1 ,求点 P ( c a , b a ) 与原点 O 的距离 OP 的取值范围.
试题篮