如图, ΔABC 和 ΔBEC 均为等腰直角三角形,且 ∠ ACB = ∠ BEC = 90 ° , AC = 4 2 ,点 P 为线段 BE 延长线上一点,连接 CP 以 CP 为直角边向下作等腰直角 ΔCPD ,线段 BE 与 CD 相交于点 F
(1)求证: PC CD = CE CB ;
(2)连接 BD ,请你判断 AC 与 BD 有什么位置关系?并说明理由;
(3)设 PE = x , ΔPBD 的面积为 S ,求 S 与 x 之间的函数关系式.
试题篮