启教通信息平台
  首页 / 试题 / 初中数学 / 试题详细
  • 科目:数学
  • 题型:解答题
  • 难度:中等
  • 人气:79

如图1,在△ ABC中,设∠ A、∠ B、∠ C的对边分别为 abc,过点 AADBC,垂足为 D,会有sin∠ C AD AC ,则

S ABC 1 2 BC× AD 1 2 × BC× ACsin∠ C 1 2 absin∠ C

S ABC 1 2 absin∠ C

同理 S ABC 1 2 bcsin∠ A

S ABC 1 2 acsin∠ B

通过推理还可以得到另一个表达三角形边角关系的定理﹣余弦定理:

如图2,在△ ABC中,若∠ A、∠ B、∠ C的对边分别为 abc,则

a 2b 2+ c 2﹣2 bccos∠ A

b 2a 2+ c 2﹣2 accos∠ B

c 2a 2+ b 2﹣2 abcos∠ C

用上面的三角形面积公式和余弦定理解决问题:

(1)如图3,在△ DEF中,∠ F=60°,∠ D、∠ E的对边分别是3和8.求 S DEFDE 2

解: S DEF EF× DFsin∠ F  

DE 2EF 2+ DF 2﹣2 EF× DFcos∠ F  

(2)如图4,在△ ABC中,已知 ACBC,∠ C=60°,△ ABC'、△ BCA'、△ ACB'分别是以 ABBCAC为边长的等边三角形,设△ ABC、△ ABC'、△ BCA'、△ ACB'的面积分别为 S 1S 2S 3S 4,求证: S 1+ S 2S 3+ S 4

登录并查看解析

如图1,在△ ABC中,设∠ A、∠ B、∠ C的对边分别为