在平面直角坐标系中,已知抛物线 y = a x 2 + 4 ax + 4 a - 6 ( a > 0 ) 与 x 轴交于 A , B 两点(点 A 在点 B 的左侧),与 y 轴交于点 C ,顶点为点 D .
(1)当 a = 6 时,直接写出点 A , B , C , D 的坐标:
A , B , C , D ;
(2)如图1,直线 DC 交 x 轴于点 E ,若 tan ∠ AED = 4 3 ,求 a 的值和 CE 的长;
(3)如图2,在(2)的条件下,若点 N 为 OC 的中点,动点 P 在第三象限的抛物线上,过点 P 作 x 轴的垂线,垂足为 Q ,交 AN 于点 F ;过点 F 作 FH ⊥ DE ,垂足为 H .设点 P 的横坐标为 t ,记 f = FP + FH .
①用含 t 的代数式表示 f ;
②设 - 5 < t ⩽ m ( m < 0 ) ,求 f 的最大值.
试题篮