如图1,在平面直角坐标系中, A ( - 2 , - 1 ) , B ( 3 , - 1 ) ,以 O 为圆心, OA 的长为半径的半圆 O 交 AO 延长线于 C ,连接 AB , BC ,过 O 作 ED / / BC 分别交 AB 和半圆 O 于 E , D ,连接 OB , CD .
(1)求证: BC 是半圆 O 的切线;
(2)试判断四边形 OBCD 的形状,并说明理由;
(3)如图2,若抛物线经过点 D 且顶点为 E .
①求此抛物线的解析式;
②点 P 是此抛物线对称轴上的一个动点,以 E , D , P 为顶点的三角形与 ΔOAB 相似,问抛物线上是否存在一点 Q .使 S ΔEPQ = S ΔOAB ?若存在,请直接写出 Q 点的横坐标;若不存在,说明理由.
试题篮