(本小题满分12分)设抛物线C1:y2=4x的准线与x轴交于点F1,焦点为F2;以F1,F2为焦点,离心率为的椭圆记作C2(1)求椭圆的标准方程;(2)直线L经过椭圆C2的右焦点F2,与抛物线C1交于A1,A2两点,与椭圆C2交于B1,B2两点。当以B1B2为直径的圆经过F1时,求|A1A2|长。(3)若M是椭圆上的动点,以M为圆心,MF2为半径作圆,是否存在定圆,使得与恒相切?若存在,求出的方程,若不存在,请说明理由。
试题篮