给定常数 c > 0 ,定义函数 f x = 2 x + c + 4 - x + c ,数列 a 1 , a 2 , a 3 , ⋯ 满足 a n + 1 = f a n , n ∈ N * . (1)若 a 1 = - c - 2 ,求 a 2 及 a 3 ; (2)求证:对任意 n ∈ N * , a n + 1 - a n ≥ c ; (3)是否存在 a 1 ,使得 a 1 , a 2 , ⋯ , a n , ⋯ 成等差数列?若存在,求出所有这样的 a 1 ,若不存在,说明理由.
试题篮