设函数 f ( x ) = a x n ( 1 - x ) + b ( x > 0 ) , n 为正整数, a , b 为常数,曲线 y = f ( x ) 在 ( 1 , f ( 1 ) ) 处的切线方程为 x + y = 1 . (1)求 a , b 的值;
(2)求函数 f ( x ) 的最大值;
(3)证明: f ( x ) < 1 n e .
试题篮