设 A ( x 1 , y 1 ) , B ( x 2 , y 2 ) 是平面直角坐标系xOy上的两点,先定义由点A到点B的一种折线距离 p ( A , B ) 为 P ( A , B ) = x 2 - x 1 + y 2 - y 1
对于平面 x O y 上给定的不同的两点 A ( x 1 , y 1 ) , B ( x 2 , y 2 ) ,
(Ⅰ)若点 C ( x , y ) 是平面 x O y 上的点,试证明 P ( A , C ) + P ( C , B ) ≥ P ( A , B ) ;
(Ⅱ)在平面 x O y 上是否存在点 C ( x , y ) ,同时满足① P ( A , C ) + P ( C , B ) = P ( A , B ) ;② P ( A , C ) = P ( C , B ) .若存在,请求出所有符合条件的点;若不存在,请予以证明.
试题篮