设函数 f ( x ) = a x + 1 x + b a , b ∈ Z ,曲线 y = f ( x ) 在点 ( 2 , f ( 2 ) ) 处的切线方程为 y = 3 . (Ⅰ)求 f ( x ) 的解析式: (Ⅱ)证明:函数 y = f ( x ) 的图像是一个中心对称图形,并求其对称中心; (Ⅲ)证明:曲线 y = f ( x ) 上任一点的切线与直线 x = 1 和直线 y = x 所围三角形的面积为定值,并求出此定值.
试题篮