设椭圆 x 2 a 2 + y 2 b 2 = 1 , ( a > b > 0 ) 的左右焦点分别为 F 1 , F 2 ,离心率 e = 2 2 ,点 F 2 到右准线为 l 的距离为 2
(Ⅰ)求 a , b 的值;
(Ⅱ)设 M , N 是 l 上的两个动点, F 1 M → · F 2 N → = 0 ,证明:当 M N 取最小值时, F 1 F 2 → + F 2 M → + F 2 N → = 0 →
试题篮