[四川]2014年初中毕业升学考试(四川德阳卷)数学
如图,直线a∥b,∠A=38°,∠1=46°,则∠ACB的度数是( )
A.84° | B.106° | C.96° | D.104° |
下列运算正确的是( )
A.a2+a=2a4 | B.a3•a2=a6 | C.2a6÷a2=2a3 | D.(a2)4=a8 |
如图是由6个相同的小正方体搭成的几何体,那么这个几何体的俯视图是( )
A. | B. | C. | D. |
如图是某射击选手5次设计成绩的折线图,根据图示信息,这5次成绩的众数、中位数分别是( )
A.7、8 | B.7、9 | C.8、9 | D.8、10 |
已知⊙O1与⊙O2的半径分别是3cm和5cm,两圆的圆心距为4cm,则两圆的位置关系是( )
A.相交 | B.内切 | C.外离 | D.内含 |
已知0≤x≤,那么函数y=﹣2x2+8x﹣6的最大值是( )
A.﹣10.5 | B.2 | C.﹣2.5 | D.﹣6 |
如图所示,边长为2的正三角形ABO的边OB在x轴上,将△ABO绕原点O逆时针旋转30°得到三角形OA1B1,则点A1的坐标为( )
A.(,1) | B.(,﹣1) | C.(1,﹣) | D.(2,﹣1) |
下列说法中正确的个数是( )
①不可能事件发生的概率为0;
②一个对象在实验中出现的次数越多,频率就越大;
③在相同条件下,只要试验的次数足够多,频率就可以作为概率的估计值;
④收集数据过程中的“记录结果”这一步,就是记录每个对象出现的频率.
A.1 | B.2 | C.3 | D.4 |
如图,在Rt△ABC中,∠ACB=90°,点D是AB的中点,且CD=,如果Rt△ABC的面积为1,则它的周长为( )
A. | B.+1 | C.+2 | D.+3 |
如图,四边形ABCD中,AB=AD,AD∥BC,∠ABC=60°,∠BCD=30°,BC=6,那么△ACD的面积是( )
A. | B. | C.2 | D. |
已知方程﹣a=,且关于x的不等式组只有4个整数解,那么b的取值范围是( )
A.﹣1<b≤3 | B.2<b≤3 | C.8≤b<9 | D.3≤b<4 |
下列运算正确的个数有 个.
①分解因式ab2﹣2ab+a的结果是a(b﹣1)2;②(﹣2)0=0;③3﹣=3.
如图,△ABC中,∠A=60°,将△ABC沿DE翻折后,点A落在BC边上的点A′处.如果∠A′EC=70°,那么∠A′DE的度数为 .
如图,直线a∥b,△ABC是等边三角形,点A在直线a上,边BC在直线b上,把△ABC沿BC方向平移BC的一半得到△A′B′C′(如图①);继续以上的平移得到图②,再继续以上的平移得到图③,…;请问在第100个图形中等边三角形的个数是 .
在四边形ABCD中,AD∥BC,∠ABC=90°,AB=BC,E为AB边上一点,∠BCE=15°,且AE=A D.连接DE交对角线AC于H,连接BH.下列结论正确的是 .(填番号)
①AC⊥DE;②;③CD=2DH;④.
为增强环境保护意识,争创“文明卫生城市”,某企业对职工进行了依次“生产和居住环境满意度”的调查,按年龄分组,得到下面的各组人数统计表:
各组人数统计表
组号 |
年龄分组 |
频数(人) |
频率 |
第一组 |
20≤x<25 |
50 |
0.05 |
第二组 |
25≤x<30 |
a |
0.35 |
第三组 |
35≤x<35 |
300 |
0.3 |
第四组 |
35≤x<40 |
200 |
b |
第五组 |
40≤x≤45 |
100 |
0.1 |
(1)求本次调查的样本容量及表中的a、b的值;
(2)调查结果得到对生产和居住环境满意的人数的频率分布直方图如图,政策规定:本次调查满意人数超过调查人数的一半,则称调查结果为满意.如果第一组满意人数为36,请问此次调查结果是否满意;并指出第五组满意人数的百分比;
(3)从第二张和第四组对生产和居住环境满意的职工中分别抽取3人和2人作义务宣传员,在这5人中随机抽取2人介绍经验,求第二组和第四组恰好各有1人被抽中介绍经验的概率.
如图,已知矩形OABC的一个顶点B的坐标是(4,2),反比例函数y=(x>0)的图象经过矩形的对称中心E,且与边BC交于点 D.
(1)求反比例函数的解析式和点D的坐标;
(2)若过点D的直线y=mx+n将矩形OABC的面积分成3:5的两部分,求此直线的解析式.
为落实国家“三农”政策,某地政府组织40辆汽车装运A、B、C三种农产品共200吨到外地销售,按计划,40辆车都要装运,每辆车只能装运同一种农产品,且必须装满,根据下表提供的信息,解答下列问题:
农产品种类 A B C
每辆汽车的装载量(吨) 4 5 6
(1)如果装运C种农产品需13辆汽车,那么装运A、B两种农产品各需多少辆汽车?
(2)如果装运每种农产品至少需要11辆汽车,那么车辆的装运方案有几种?写出每种装运方案.
如图,⊙O中,FG、AC是直径,AB是弦,FG⊥AB,垂足为点P,过点C的直线交AB的延长线于点D,交GF的延长线于点E,已知AB=4,⊙O的半径为.
(1)分别求出线段AP、CB的长;
(2)如果OE=5,求证:DE是⊙O的切线;
(3)如果tan∠E=,求DE的长.