天津市滨海新区高三联考试卷文科数学
如图,已知Rt△ABC的两条直角边AC,BC的长分别为3cm,4cm,以AC为直径的圆与AB交于点D,则BD= cm.
给定下列四个命题:
①“”是“”的充分不必要条件;
②若“”为真,则“”为真;
③命题的否定是;
④线性相关系数的绝对值越接近于,表明两个随机变量线性相关性越强;
其中为真命题的是 (填上所有正确命题的序号).
已知双曲线的左、右焦点分别为、,抛物线的顶点在原点,它的准线与双曲线的左准线重合,若双曲线与抛物线的交点满足,则双曲线的离心率为 .
有两枚大小相同、质地均匀的正四面体玩具,每个玩具的各个面上分别写着数字1,2,3,5。同时投掷这两枚玩具一次,记为两个朝下的面上的数字之和。
(1)求事件“m不小于6”的概率;
(2)“m为奇数”的概率和“m为偶数”的概率是不是相等?证明你作出的结论。
如图,在三棱锥中,底面,点,分别在棱上,且 (Ⅰ)求证:平面;
(Ⅱ)当为的中点时,求与平面所成角的正弦值;
(Ⅲ)是否存在点使得二面角为直二面角?并说明理由.
设数列
(1)求数列的通项公式;
(2)设,求数列
(3)设,,记,设数列的前项和为,求证:对任意正整数都有;
已知函数,,其中.
(I)设函数.若在区间上不单调,求的取值范围;
(II)设函数 是否存在,对任意给定的非零实数,存在惟一的非零实数(),使得成立?若存在,求的值;若不存在,请说明理由.
如图,椭圆与一等轴双曲线相交,是其中一个交点,并且双曲线的顶点是该椭圆的焦点,双曲线的焦点是椭圆的顶点,的周长为.设为该双曲线上异于顶点的任一点,直线和与椭圆的交点分别为和.
(Ⅰ)求椭圆和双曲线的标准方程;
(Ⅱ)设直线、的斜率分别为、,证明;
(Ⅲ)是否存在常数,使得恒成立?若存在,求的值;若不存在,请说明理由.