湖北省八市高三下学期3月联考文科数学试卷
设全集U=R,A={x|},B=,则右图中阴影部分表示的集合为( )
A. |
B. |
C. |
D. |
等比数列{an}的各项均为正数,且,则( )
A.12 | B.10 | C.8 | D.2+log3 5 |
在某项测量中得到的A样奉数据如下:82、84、84、86、86、86、88、88、88、88,若B样本数据恰好是A样本数据每个都加2后所得的数据,则A、B两样本的下列数字特征对应相同的是( ).
A.众数 B.平均数
C.中位数 D.标准差
设变量x.y满足约束条件则目标函数的最大值和最小值分别为( )
A.3,一11 | B.-3,一11 | C.11,—3 | D.11,3 |
某工厂产生的废气经过过滤后排放,排放时污染物的含量不得超过1%.己知在过滤过程中废气中的污染物数量尸(单位:毫克/升)与过滤时间t(单位:小时)之间的函数关系为:P=P0e-kt,(k,P0均为正的常数).若在前5个小时的过滤过程中污染物被排除了90%.那么,至少还需( )时间过滤才可以排放.
A.小时 | B.小时 | C.5小时 | D.10小时 |
己知抛物线的焦点F恰好是双曲线的右焦点,且两条曲线的交点的连线过点F,则该双曲线的离心率为( )
A.+1 | B.2 | C. | D.-1 |
如图,已知正方体ABCD一A1B1C1D1中,P为面ABCD上一动点,且,则点P的轨迹是( )
A.椭圆的一段 | B.双曲线的一段 | C.抛物线的一段 | D.圆的一段 |
欧阳修《卖油翁》中写到:(翁)乃取一葫芦置于地,以钱覆其口,徐以杓酌油沥之,自钱孔入,而钱不湿.己知铜钱是直径为4cm的圆面,中间有边长为lcm的正方形孔,若随机向铜钱上滴一滴油(油滴整体落在铜钱内),则油滴整体(油滴是直径为0.2cm的球)正好落入孔中的概率是 .(不作近似计算).
某地区为了绿化环境进行大面积植树造林,如图,在区域内植树,第一棵树在点Al(0,1),第二棵树在点.B1(l,l),第三棵树在点C1(1,0),第四棵树在点C2(2,0),接着按图中箭头方向每隔一个单位种一棵树,那么
(1)第n棵树所在点坐标是(44,0),则n= .
(2)第2014棵树所在点的坐标是 .
己知函数在处取最小值.
(1)求的值。
(2)在△ABC中,a、b、c分别是A、B、C的对边,已知a=l,b=,,求角C.
己知各项均不相等的等差数列{an}的前四项和S4=14,且a1,a3,a7成等比数列.
(1)求数列{an}的通项公式;
(2)设Tn为数列的前n项和,若Tn≤¨对恒成立,求实数的最小值.
如图所示,在矩形ABCD中,AB=a,BC=a,以对角线AC为折线将直角三角形ABC向上翻折到三角形APC的位置(B点与P点重合),P点在平面ACD上的射影恰好落在边AD上的H处.
(1)求证:PA⊥CD;
(2)求直线PC与平面ACD所成角的正切值.
平面直角坐标系xoy中,动点满足:点P到定点与到y轴的距离之差为.记动点P的轨迹为曲线C.
(1)求曲线C的轨迹方程;
(2)过点F的直线交曲线C于A、B两点,过点A和原点O的直线交直线于点D,求证:直线DB平行于x轴.