湖南省长沙市长望浏宁四县高三3月调研考试数学理卷
下列说法中,正确的是
A.命题“若,则”的逆命题是真命题 |
B.命题“,”的否定是:“,” |
C.命题“或”为真命题,则命题“”和命题“”均为真命题 |
D.已知,则“”是“”的充分不必要条件 |
已知回归方程 则
A.=1.5-15 | B. 15是回归系数a |
C. 1.5是回归系数a | D.x=10时,y=0 |
图中的阴影部分由底为,高为的等腰三角形及高为和的两矩形所构成.设函数
是图中阴影部分介于平行线及之间的那一部分的面积,
则函数的图象大致为
下图展示了一个由区间到实数集R的映射过程:区间中的实数对应数轴上的点(如图1);将线段围成一个圆,使两端点、恰好重合(从到是逆时针,如图2);再将这个圆放在平面直角坐标系中,使其圆心在y轴上,点的坐标为(如图3),图3中直线与x轴交于点,则的象就是,记作.
则下列命题中正确的是
A. | B.是奇函数 |
C.在其定义域上单调递增 | D.的图象关于轴对称 |
在平面直角坐标系中,设是由不等式组表示的区域,是到原点的距离不大于1的点构成的区域,向中随机投一点,则所投点落在中的概率是 .
把边长为1的正方形沿对角线折起形成三棱锥的主视图与俯视图如图所示,则左视图的面积为
在平面直角坐标系中,为坐标原点.定义、两点之间的“直角距离”为.若点,则= ;已知点,点M是直线上的动点,的最小值为 .
14.如图,半径为2的⊙O中,,为的中点,的延长线交⊙O于点,则线段的长为
目标函数是单峰函数,若用分数法需要从12个试验点中找出最佳点,则前两个试验点放在因素范围的位置为
(本小题满分12分)
某地区举办科技创新大赛,有50件科技作品参赛,大赛组委会对这50件作品分别
从“创新性”和“实用性”两项进行评分,每项评分均按等级采用5分制,若设“创新性”得分为,“实用性”得分为,统计结果如下表:
作品数量 |
实用性 |
|||||
1分 |
2分 |
3分 |
4分 |
5分 |
||
创 新 性 |
1分 |
1 |
3 |
1 |
0 |
1 |
2分 |
1 |
0 |
7 |
5 |
1 |
|
3分 |
2 |
1 |
0 |
9 |
3 |
|
4分 |
1 |
6 |
0 |
|||
5分 |
0 |
0 |
1 |
1 |
3 |
(1)求“创新性为4分且实用性为3分”的概率;
(2)若“实用性”得分的数学期望为,求、的值.
(本小题满分12分)
已知正方形ABCD的边长为1,.将正方形ABCD沿对角线折起,使,得到三棱锥A—BCD,如图所示.
(1)求证:;
(2)求二面角的余弦值.
(本小题满分13分)
某电视生产企业有A、B两种型号的电视机参加家电下乡活动,若企业投放A、B两种型号电视机的价值分别为a、b万元,则农民购买电视机获得的补贴分别为万元(m>0且为常数).已知该企业投放总价值为10万元的A、B两种型号的电视机,且A、B两种型号的投放金额都不低于1万元.
(1)请你选择自变量,将这次活动中农民得到的总补贴表示为它的函数,并求其定义域;
(2)求当投放B型电视机的金额为多少万元时,农民得到的总补贴最大?
(本小题满分13分)
给定椭圆>>0,称圆心在原点,半径为的圆是椭圆的“准圆”。若椭圆的一个焦点为,其短轴上的一个端点到的距离为。
(1)求椭圆的方程和其“准圆”方程;
(2)点是椭圆的“准圆”上的一个动点,过点作直线,使得与椭圆都只有一个交点。求证:⊥.