[广东]2014届广东佛山普通高中高三教学质量检测(一)文数学卷
给定命题:若,则; 命题:若,则.则下列各命题中,假命题的是( )
A. | B. | C. | D. |
某由圆柱切割获得的几何体的三视图如图所示,其中俯视图是中心角为的扇形,则该几何体的体积为( )
A. | B. | C. | D. |
若函数的一个正数零点附近的函数值用二分法计算,其参考数据如下:
f(1)=-2 |
f(1.5)=0.625 |
f(1.25)=-0.984 |
f(1.375)=-0.260 |
f(1.4375)=0.162 |
f(1.40625)=-0.054 |
那么方程的一个最接近的近似根为( )
A. B. C. D.
执行如图所示的程序框图,若输入的值为,则输出的的值为( )
A. | B. | C. | D. |
已知椭圆的两个焦点和短轴的两个端点恰好为一个正方形的四个顶点,则该椭圆的离心率为( )
A. | B. | C. | D. |
将个正整数、、、…、()任意排成行列的数表.对于某一个数表,计算各行和各列中的任意两个数、()的比值,称这些比值中的最小值为这个数表的“特征值”.当时,数表的所有可能的“特征值”最大值为
A. | B. | C. | D. |
一个总体分为甲、乙两层,用分层抽样方法从总体中抽取一个容量为的样本.已知乙层中每个个体被抽到的概率都为,则总体中的个体数为 .
佛山某中学高三(1)班排球队和篮球队各有名同学,现测得排球队人的身高(单位:)分别是:、、、、、、、、、,篮球队人的身高(单位:)分别是:、、、、、、、、、.
(Ⅰ)请把两队身高数据记录在如图所示的茎叶图中,并指出哪个队的身高数据方差较小(无需计算);
(Ⅱ)现从两队所有身高超过的同学中随机抽取三名同学,则恰好两人来自排球队一人来自篮球队的概率是多少?
如图1,矩形中,,,、分别为、边上的点,且,,将沿折起至位置(如图2所示),连结、,其中.
(Ⅰ)求证:平面;
(Ⅱ)在线段上是否存在点使得平面?若存在,求出点的位置;若不存在,请说明理由.
(Ⅲ)求点到平面的距离.
数列、的每一项都是正数,,,且、、成等差数列,、、成等比数列,.
(Ⅰ)求、的值;
(Ⅱ)求数列、的通项公式;
(Ⅲ)记,证明:对一切正整数,有.