2011年初中毕业升学考试(广西玉林卷)数学
(11·漳州)九年级一班5名女生进行体育测试,她们的成绩分别为70,80,85,75,85(单位:分),这次测试成绩的众数和中位数分别是
A.79,85 | B.80,79 | C.85,80 | D.85,85 |
(11·漳州)下列命题中,假命题是
A.经过两点有且只有一条直线 | B.平行四边形的对角线相等 |
C.两腰相等的梯形叫做等腰梯形 | D.圆的切线垂直于经过切点的半径 |
(11·漳州)如图,P (x,y)是反比例函数y=的图象在第一象限分支上的一个动点,PA⊥x轴于点A,PB⊥y轴于点B,随着自变量x的增大,矩形OAPB的面积
A.不变 | B.增大 | C.减小 | D.无法确定 |
西周戎生青铜编钟是由八个大小不同的小编钟组成,其中最大编钟高度比最小编钟高度的3倍少5cm,且它们的高度相差37 cm.则最大编钟的高度是 cm.
(11·漳州)2010年我市为突出“海西建设,漳州先行”发展主线,集中力量大干150天,打好五大战役,全市经济增长取得新的突破,全年实现地区生产总值约为140 070 000 000元,用科学记数法表示为_ ▲ 元.
(11·漳州)口袋中有2个红球和3个白球,每个球除颜色外完全相同,从口袋中随机摸出一个红球的概率是_ ▲ .
(11·漳州)如图是一个圆锥形型的纸杯的侧面展开图,已知圆锥底面半径为5 cm,母线长为15cm,那么纸杯的侧面积为_ ▲ cm2.(结果保留π)
(11·漳州)用形状和大小相同的黑色棋子按下图所示的方式排列,按照这样的规律,第n个图形需要棋子_ ▲ 枚.(用含n的代数式表示)
(11·漳州)(满分9分)已知三个一元一次不等式:2x>4,2x≥x-1,x-3<0.请从中选择你喜欢的两个不等式,组成一个不等式组,求出这不等式组的解集,并将解集在数轴上表示出来.
(1)你组成的不等式组是;
(2)解:
(11·漳州)(满分8分)如图,∠B=∠D,请在不增加辅助线的情况下,添加一个适当的条件,使△ABC≌△ADE,并证明.
(1)添加的条件是_ ▲ ;
(2)证明:
(11·漳州)(满分8分)下图是2002年在北京举办的世界数学家大会的会标“弦图”,它既标志着中国古代的数学成就,又像一只转动着的风车,欢迎世界各地的数学家们.
请将“弦图”中的四个直角三角形通过你所学过的图形变换,在以下方格纸中设计另个两个不同的图案.画图要求:(1)每个直角三角形的顶点均在方格纸的格点上,且四个三角形到不重叠;(2)所设计的图案(不含方格纸)必须是中心对称图形或轴对称图形.
(11·漳州)(满分8分)漳州市某中学对全校学生进行文明礼仪知识测试,为了解测试结果,随机抽取部分学生的成绩进行分析,将成绩分为三个等级:不合格、一般、优秀,并绘制成如下两幅统计图(不完整).请你根据图中所给的信息解答下列问题:
(1)请将以上两幅统计图补充完整;
(2)若“一般”和“优秀”均被视为达标成绩,则该校被抽取的学生中有_ ▲ 人达标;
(3)若该校学生有1200人,请你估计此次测试中,全校达标的学生有多少人?
(11·漳州)(满分8分)某校“我爱学数学”课题学习小组的活动主题是“测量学校旗杆的高度”.以下是该课题小组研究报告的部分记录内容:
课题 |
测量学校旗杆的高度 |
图示 |
|
发言记录 |
小红:我站在远处看旗杆顶端,测得仰角为30° 小亮:我从小红的位置向旗杆方向前进12 m看旗杆顶端,测得仰角为60° 小红:我和小亮的目高都是1.6 m |
请你根据表格中记录的信息,计算旗杆AG的高度.(取1.7,结果保留两个有效数字)
(11·漳州)(满分10分)如图,AB是⊙O的直径,,∠COD=60°.
(1)△AOC是等边三角形吗?请说明理由;
(2)求证:OC∥BD.
(11·漳州)(满分10分)2008年漳州市出口贸易总值为22.52亿美元,至2010年出口贸易总值达到50.67亿美元,反映了两年来漳州市出口贸易的高速增长.
(1)求这两年漳州市出口贸易的年平均增长率;
(2)按这样的速度增长,请你预测2011年漳州市的出口贸易总值.
(温馨提示:2252=4×563,5067=9×563)
(11·漳州)(满分13分)如图,直线y=-2x+2与x轴、y轴分别交于A、B两点,将△OAB绕点O逆时针方向旋转90°后得到△OCD.
(1)填空:点C的坐标是(_ ▲ ,_ ▲ ),
点D的坐标是(_ ▲ ,_ ▲ );
(2)设直线CD与AB交于点M,求线段BM的长;
(3)在y轴上是否存在点P,使得△BMP是等腰三角形?若存在,
请求出所有满足条件的点P的坐标;若不存在,请说明理由.
(11·漳州)(满分14分)如图1,抛物线y=mx2-11mx+24m (m<0) 与x轴交于B、C两点(点B在点C的左侧),抛物线另有一点A在第一象限内,且∠BAC=90°.
(1)填空:OB=_ ▲ ,OC=_ ▲ ;
(2)连接OA,将△OAC沿x轴翻折后得△ODC,当四边形OACD是菱形时,求此时抛物线的解析式;
(3)如图2,设垂直于x轴的直线l:x=n与(2)中所求的抛物线交于点M,与CD交于点N,若直线l沿x轴方向左右平移,且交点M始终位于抛物线上A、C两点之间时,试探究:当n为何值时,四边形AMCN的面积取得最大值,并求出这个最大值.
(11·漳州)下列运算正确的是
A.a3·a2= a5 | B.2a-a=2 | C.a+b=ab | D.(a3)2=a9 |
(11·漳州)下列事件中,属于必然事件的是
A.打开电视机,它正在播广告 | B.打开数学书,恰好翻到第50页 |
C.抛掷一枚均匀的硬币,恰好正面朝上 | D.一天有24小时 |
如图,在平行四边形ABCD中,∠B=80°,AE平分∠BAD交BC于点E,CF∥AE交AE于点F,则∠1=( )
A.40° | B.50° | C.60° | D.80° |
已知二次函数的图象开口向上,则直线经过的象限是( )
A.第一、二、三象限 | B.第二、三、四象限 |
C.第一、二、四象限 | D.第一、三、四象限 |
如图,是我市5月份某一周的最高气温统计图,则这组数据(最高气温)的众数与中位数分别是( )
A.28℃,29℃ | B.28℃,29.5℃ |
C.28℃,30℃ | D.29℃,29℃ |
小英家的圆形镜子被打碎了,她拿了如图(网格中的每个小正方形边长为1)的一块碎片到玻璃店,配制成形状、大小与原来一致的镜面,则这个镜面的半径是( )
A.2 | B. | C. | D.3 |
如图,是反比例函数和()在第一象限的图象,直线AB∥x轴,并分别交两条曲线于A、B两点,若,则的值是( )
A、1 B、2 C、4 D、8
一个容器装有1升水,按照如下要求把水倒出:第1次倒出升水,第2次倒出的水量是升的,第3次倒出的水量是升的,第4次倒出的水量是升的,…
按照这种倒水的方法,倒了10次后容器内剩余的水量是( )
A.升 | B.升 | C.升 | D.升 |
如图,是某校三个年级学生人数分布扇形统计图,则九年级学生人数所占扇形的圆心角的度数为__________
如图,等边△ABC绕点B逆时针旋转30°时,点C转到C′的位置,且BC′与AC交于点D,则的值为__________
如图,AB是半圆O的直径,以0A为直径的半圆O′与弦AC交于点D,O′E∥AC,并交OC于点E.则下列四个结论:
①点D为AC的中点;②;③ ;④四边形O'DEO是菱形.其
中正确的结论是 __________.(把所有正确的结论的序号都填上)
已知:是一元二次方程的两个实数根.
求:的值.考点:实数的运算;零指数幂;负整数指数幂.
专题:计算题.
分析:分别根据负整数指数幂、0指数幂、绝对值的性质及二次根式的化简计算出各数,再根据实数混合运算的法则进行计算即可.
解答:解:原式=2-1-3+2,
=0.
故答案为:0.
点评:本题考查的是实数的运算,熟知负整数指数幂、0指数幂、绝对值的性质及二次根式的化简是解答此题的关键.
答题:ZJX老师
假日,小强在广场放风筝.如图,小强为了计算风筝离地面的高度,他测得风筝的仰角为60°,已知风筝线BC的长为10米,小强的身高AB为1.55米,请你帮小强画出测量示意图,并计算出风筝离地面的高度.(结果精确到1米,参考数据≈1.41,≈1.73 )
如图,△OAB的底边经过⊙O上的点C,且OA=OB,CA=CB,⊙O与OA、OB分别交于D、E两点.
(1)求证:AB是⊙O的切线;
(2)若D为OA的中点,阴影部分的面积为,求⊙O的半径r.
一个不透明的纸盒中装有大小相同的黑、白两种颜色的围棋,其中白色棋子3个(分别用白A、白B、白C表示),若从中任意摸出一个棋子,是白色棋子的概率为.
(1)求纸盒中黑色棋子的个数;
(2)第一次任意摸出一个棋子(不放回),第二次再摸出一个棋子,请用树状图或列表的方法,求两次摸到相同颜色棋子的概率.
上个月某超市购进了两批相同品种的水果,第一批用了2000元,第二批用了5500元,第二批购进水果的重量是第一批的2.5倍,且进价比第一批每千克多1元.
(1)求两批水果共购进了多少千克?
(2)在这两批水果总重量正常损耗10%,其余全部售完的情况下,如果这两批水果的售价相同,且总利润率不低于26%,那么售价至少定为每千克多少元?
(利润率= )
如图,点G是正方形ABCD对角线CA的延长线上任意一点,以线段AG为边作一个正方形AEFG,线段EB和GD相交于点H.
(1)求证:EB=GD;
(2)判断EB与GD的位置关系,并说明理由;
(3)若AB=2,AG=,求EB的长.