[河南]2014届河南省郑州市高中毕业年级第一次质量预测文科数学试卷
复数(是虚数单位)在复平面内对应的点在( )
A.第一象限 | B.第二象限 | C.第三象限 | D.第四象限 |
是指大气中直径小于或等于2.5微米的颗粒物,也称为可入肺颗粒物,如图是根据某地某日早7点至晚8点甲、乙两个监测点统计的数据(单位:毫克/每立方米)列出的茎叶图,则甲、乙两地浓度的方差较小的是( )
A.甲 | B.乙 | C.甲乙相等 | D.无法确定 |
如图,某几何体的正视图和俯视图都是矩形,侧视图是平行四边形,则该几何体的体积为( )
A. | B. | C. | D. |
已知曲线的一条切线的斜率为2,则切点的横坐标为( )
A.3 | B.2 | C.1 | D. |
已知各项不为0的等差数列满足,数列是等比数列,且,则等于( )
A.1 | B.2 | C.4 | D.8 |
已知抛物线,过其焦点且斜率为-1的直线交抛物线于两点,若线段的中点的纵坐标为-2,则该抛物线的准线方程为( )
A. | B. | C. | D. |
设函数,且其图像关于直线对称,则( )
A.的最小正周期为,且在上为增函数 |
B.的最小正周期为,且在上为增函数 |
C.的最小正周期为,且在上为减函数 |
D.的最小正周期为,且在上为减函数 |
双曲线()的左、右焦点分别是,过作倾斜角为的直线交双曲线右支于点,若轴,则双曲线的离心率为( )
A. | B. | C. | D. |
已知向量是与单位向量夹角为的任意向量,则对任意的正实数,的最小值是( )
A.0 | B. | C. | D.1 |
定义在上的函数的单调增区间为,若方程恰有4个不同的实根,则实数的值为( )
A. | B. | C.1 | D.-1 |
已知三棱柱的侧棱垂直于底面,各项点都在同一球面上,若,,,,则此球的表面积等于 .
整数数列满足 ,若此数列的前800项的和是2013,前813项的和是2000,则其前2014项的和为 .
(本小题满分12分)已知函数 ,当时取得最小值-4.
(1)求函数的解析式;
(2)若等差数列前n项和为,且,,求数列的前n项和.
(本小题满分12分)郑州市为了缓解交通压力,大力发展公共交通,提倡多坐公交少开车.为了调查市民乘公交车的候车情况,交通主管部门从在某站台等车的45名候车乘客中随机抽取15人,按照他们的候车时间(单位:分钟)作为样本分成6组,如下表所示:
(1)估计这45名乘客中候车时间少于12分钟的人数;
(2)若从上表第四、五组的5人中随机抽取2人做进一步的问卷调查,求抽到的2人恰好来自不同组的概率.
(本小题满分12分)在三棱柱中,侧面为矩形,,,为的中点,与交于点,侧面.
(1)证明:;
(2)若,求三棱锥的体积.
(本小题满分12分)已知的两顶点坐标,,圆是的内切圆,在边,,上的切点分别为,(从圆外一点到圆的两条切线段长相等),动点的轨迹为曲线.
(1)求曲线的方程;
(2)设直线与曲线的另一交点为,当点在以线段为直径的圆上时,求直线的方程.
(本小题满分12分)已知函数,.
(1)当时,求函数的单调区间和极值;
(2)若恒成立,求实数的值.
如图,四点在同一圆上,与的延长线交于点,点在的延长线上.
(1)若,,求的值;
(2)若,证明:.
已知曲线(为参数),(为参数).
(1)化的方程为普通方程,并说明它们分别表示什么曲线;
(2)过曲线的左顶点且倾斜角为的直线交曲线于两点,求.