启教通信息平台
  首页 / 试题 / 初中数学 / 试卷选题

[北京]2014届北京海淀区九年级第一学期期中测评数学试卷

一元二次方程的二次项系数、一次项系数、常数项分别是(  )

A. B. C. D.
来源:2014届北京海淀区九年级第一学期期中测评数学试卷
  • 题型:未知
  • 难度:未知

在角、等边三角形、平行四边形、圆中,既是中心对称图形又是轴对称图形的是(  )

A.角 B.等边三角形 C.平行四边形 D.圆
来源:2014届北京海淀区九年级第一学期期中测评数学试卷
  • 题型:未知
  • 难度:未知

函数中,自变量的取值范围是(  )

A. B. C. D.
来源:2014届北京海淀区九年级第一学期期中测评数学试卷
  • 题型:未知
  • 难度:未知

如图,点上,若,则的大小是(   )

A. B. C. D.
来源:2014届北京海淀区九年级第一学期期中测评数学试卷
  • 题型:未知
  • 难度:未知

用配方法解方程,配方正确的是(  )

A. B. C. D.
来源:2014届北京海淀区九年级第一学期期中测评数学试卷
  • 题型:未知
  • 难度:未知

如图所示的图案绕旋转中心旋转一定角度后能够与自身重合,那么这个旋转角可能是(  )

A. B. C. D.
来源:2014届北京海淀区九年级第一学期期中测评数学试卷
  • 题型:未知
  • 难度:未知

,则的值为(  )

A.-1 B.1 C.5 D.6
来源:2014届北京海淀区九年级第一学期期中测评数学试卷
  • 题型:未知
  • 难度:未知

如图,⊙的半径为5,点到圆心的距离为,如果过点作弦,那么长度为整数值的弦的条数为(  )

A.3 B.4 C.5 D.6
来源:2014届北京海淀区九年级第一学期期中测评数学试卷
  • 题型:未知
  • 难度:未知

如图,将绕点顺时针旋转至的位置,若,则的大小为________.

来源:2014届北京海淀区九年级第一学期期中测评数学试卷
  • 题型:未知
  • 难度:未知

已知一元二次方程有一个根是0,那么这个方程可以是          .(填上你认为正确的一个方程即可).

来源:2014届北京海淀区九年级第一学期期中测评数学试卷
  • 题型:未知
  • 难度:未知

如图,是⊙的直径,点为⊙上的两点,若,则的大小为           

来源:2014届北京海淀区九年级第一学期期中测评数学试卷
  • 题型:未知
  • 难度:未知

下面是一个按某种规律排列的数阵:

 
 
 
1
 
 
 
第1行
 
 


2
 
 
第2行
 




3
 
第3行






4
第4行
 
 

 
 

根据数阵排列的规律,则第5行从左向右数第5个数为       ,,且是整数)行从左向右数第5个数是        (用含n的代数式表示).

来源:2014届北京海淀区九年级第一学期期中测评数学试卷
  • 题型:未知
  • 难度:未知

计算:

来源:2014届北京海淀区九年级第一学期期中测评数学试卷
  • 题型:未知
  • 难度:未知

用公式法解一元二次方程:

来源:2014届北京海淀区九年级第一学期期中测评数学试卷
  • 题型:未知
  • 难度:未知

如图,均是等边三角形,连接BE、CD.请在图中找出一条与长度相等的线段,并证明你的结论.
结论:
证明:

来源:2014届北京海淀区九年级第一学期期中测评数学试卷
  • 题型:未知
  • 难度:未知

时,求代数式的值.

来源:2014届北京海淀区九年级第一学期期中测评数学试卷
  • 题型:未知
  • 难度:未知

如图,两个圆都以点为圆心,大圆的弦交小圆于两点.
求证:=

来源:2014届北京海淀区九年级第一学期期中测评数学试卷
  • 题型:未知
  • 难度:未知

如图,有一块长20米,宽12米的矩形草坪,计划沿水平和竖直方向各修一条宽度相同的小路,剩余的草坪面积是原来的,求小路的宽度.

来源:2014届北京海淀区九年级第一学期期中测评数学试卷
  • 题型:未知
  • 难度:未知

已知关于x的一元二次方程的一个根为2.
(1)求m的值及另一根;
(2)若该方程的两个根分别是等腰三角形的两条边的长,求此等腰三角形的周长.

来源:2014届北京海淀区九年级第一学期期中测评数学试卷
  • 题型:未知
  • 难度:未知

如图,DE为半圆的直径,O为圆心,DE=10,延长DE到A,使得EA=1,直线与半圆交于两点,且

(1)求弦BC的长;
(2)求的面积

来源:2014届北京海淀区九年级第一学期期中测评数学试卷
  • 题型:未知
  • 难度:未知

已知关于的方程有两个不相等的实数根.
(1)求k的取值范围;
(2)求证:不可能是此方程的实数根.

来源:2014届北京海淀区九年级第一学期期中测评数学试卷
  • 题型:未知
  • 难度:未知

阅读下面的材料:
小明在研究中心对称问题时发现:
如图1,当点为旋转中心时,点绕着点旋转180°得到点,点再绕着点旋转180°得到点,这时点与点重合.
如图2,当点为旋转中心时,点绕着点旋转180°得到点,点绕着点旋转180°得到点,点绕着点旋转180°得到点,点绕着点旋转180°得到点,小明发现P、两点关于点中心对称.

(1)请在图2中画出点, 小明在证明P、两点关于点中心对称时,除了说明P、三点共线之外,还需证明;
(2)如图3,在平面直角坐标系xOy中,当为旋转中心时,点绕着点旋转180°得到点;点绕着点旋转180°得到点;点绕着点旋转180°得到点;点绕着点旋转180°得到点. 继续如此操作若干次得到点,则点的坐标为(),点的坐为.

来源:2014届北京海淀区九年级第一学期期中测评数学试卷
  • 题型:未知
  • 难度:未知

已知关于的一元二次方程
(1)求证:此方程总有两个实数根;
(2)若此方程的两个实数根都是整数,求的整数值;
(3)若此方程的两个实数根分别为,求代数式的值.

来源:2014届北京海淀区九年级第一学期期中测评数学试卷
  • 题型:未知
  • 难度:未知

已知在中,,点在直线上,,点在线段上,的中点,直线与直线交于点.
(1)如图1,若点在线段上,请分别写出线段之间的位置关系和数量关系:___________,___________;

(2)在(1)的条件下,当点在线段上,且时,求证:
(3)当点在线段的延长线上时,在线段上是否存在点,使得.若存在,请直接写出的长度;若不存在,请说明理由.

来源:2014届北京海淀区九年级第一学期期中测评数学试卷
  • 题型:未知
  • 难度:未知

在平面直角坐标系xOy中,点分别在轴、轴的正半轴上,且,点为线段的中点.
(1)如图1,线段的长度为________________;

(2)如图2,以为斜边作等腰直角三角形,当点在第一象限时,求直线所对应的函数的解析式;

(3)如图3,设点分别在轴、轴的负半轴上,且,以为边在第三象限内作正方形,请求出线段长度的最大值,并直接写出此时直线所对应的函数的解析式.



图2

 

 

来源:2014届北京海淀区九年级第一学期期中测评数学试卷
  • 题型:未知
  • 难度:未知