启教通信息平台
  首页 / 试题 / 高中数学 / 试卷选题

[四川]2013届四川宜宾高三第二次模拟考试理科数学试卷

已知集合A=,集合B满足,则集合B有(  )个

A.1 B.2 C.3 D.4
来源:2013届四川宜宾高三第二次模拟考试理科数学试题
  • 题型:未知
  • 难度:未知

是虚数单位,复数的共轭复数是: (     ) 

A. B. C. D.
来源:2013届四川宜宾高三第二次模拟考试理科数学试题
  • 题型:未知
  • 难度:未知

在一个几何体的三视图中,正视图和俯视图如下图所示,则该几何体的体积为(   )

A.cm3 B.cm3 C.cm3 D.cm3
来源:2013届四川宜宾高三第二次模拟考试理科数学试题
  • 题型:未知
  • 难度:未知

如果执行如图所示的框图,输入N=10, 则输出的数等于(   )

A.25 B.35 C.45 D.55
来源:2013届四川宜宾高三第二次模拟考试理科数学试题
  • 题型:未知
  • 难度:未知

下列命题中,m、n表示两条不同的直线,α、β、γ表
示三个不同的平面.
①若m⊥α,n∥α,则m⊥n;
②若α⊥γ,β⊥γ,则α∥β;
③若m∥α,n∥α,则m∥n;
④若α∥β,β∥γ,m⊥α,则m⊥γ.
则正确的命题是  

A.①③ B.②③ C.①④ D.②④
来源:2013届四川宜宾高三第二次模拟考试理科数学试题
  • 题型:未知
  • 难度:未知

,则的值为

A. B.1( C.2 D.
来源:2013届四川宜宾高三第二次模拟考试理科数学试题
  • 题型:未知
  • 难度:未知

是同一平面的三个单位向量,且, 则的最小值为(   )

A.-1 B.-2 C.1- D.
来源:2013届四川宜宾高三第二次模拟考试理科数学试题
  • 题型:未知
  • 难度:未知

设直线的斜率为2且过抛物线的焦点F,又与轴交于点A,为坐标原点,若的面积为4,则抛物线的方程为:

A. B. C. D.
来源:2013届四川宜宾高三第二次模拟考试理科数学试题
  • 题型:未知
  • 难度:未知

用红、黄、蓝、白、黑五种颜色涂在"田"字形的4个小方格内,一格涂一种颜色而且相邻两格涂不同的颜色,如颜色可以重复使用,则有且仅有两格涂相同颜色的概率为(  )

A. B. C. D.
来源:2013届四川宜宾高三第二次模拟考试理科数学试题
  • 题型:未知
  • 难度:未知

如图,轴截面为边长为等边三角形的圆锥,过底面圆周上任一点作一平面,且与底面所成二面角为,已知与圆锥侧面交线的曲线为椭圆,则此椭圆的离心率为(  )

A.   B. C. D.
来源:2013届四川宜宾高三第二次模拟考试理科数学试题
  • 题型:未知
  • 难度:未知

如果是周期为2的奇函数,当时,,那么
       

来源:2013届四川宜宾高三第二次模拟考试理科数学试题
  • 题型:未知
  • 难度:未知

是直线,是平面,,向量上,向量上,,则所成二面角中较小的一个余弦值为        .

来源:2013届四川宜宾高三第二次模拟考试理科数学试题
  • 题型:未知
  • 难度:未知

已知函数,则=_______.

来源:2013届四川宜宾高三第二次模拟考试理科数学试题
  • 题型:未知
  • 难度:未知

已知平面直角坐标系xoy上的区域D由不等式组给定,若为D上的动点,A的坐标为(-1,1),则的取值范围是_____________.

来源:2013届四川宜宾高三第二次模拟考试理科数学试题
  • 题型:未知
  • 难度:未知

设函数的定义域为D,若存在非零实数使得对于任意,有,且,则称为M上的高调函数,如果定义域为的函数上的高调函数,那么实数的取值范围是_____________.

来源:2013届四川宜宾高三第二次模拟考试理科数学试题
  • 题型:未知
  • 难度:未知

已知函数的图像上两相邻最高点的坐标分别为.
(Ⅰ)求的值;
(Ⅱ)在△ABC中,分别是角A,B,C的对边,且的取值范围.

来源:2013届四川宜宾高三第二次模拟考试理科数学试题
  • 题型:未知
  • 难度:未知

在数列中,为常数,,且成公比不等于1的等比数列.
(Ⅰ)求的值;
(Ⅱ)设,求数列的前项和.

来源:2013届四川宜宾高三第二次模拟考试理科数学试题
  • 题型:未知
  • 难度:未知

如图1,在Rt中,,D、E分别是上的点,且,将沿折起到的位置,使,如图2.

(Ⅰ)求证:平面平面
(Ⅱ)若,求与平面所成角的余弦值;
(Ⅲ)当点在何处时,的长度最小,并求出最小值.

来源:2013届四川宜宾高三第二次模拟考试理科数学试题
  • 题型:未知
  • 难度:未知

某市城调队就本地居民的月收入调查了10000人, 并根据所得数据画出了样本的频率分布直方图(每个分组包括左端点, 不包括右端点, 如第一组表示收入在, 单位: 元).

(Ⅰ)求随机抽取一位居民,估计该居民月收入在的概率,并估计这10000人的人均月收入;
(Ⅱ)若将频率视为概率,从本地随机抽取3位居民(看作有放回的抽样),求月收入在上居民人数的数学期望.

来源:2013届四川宜宾高三第二次模拟考试理科数学试题
  • 题型:未知
  • 难度:未知

已知椭圆的中心在坐标原点O, 焦点在x轴上, 椭圆的短轴端点和焦点所组成的四边形为正方形, 两准线间的距离为4.

(Ⅰ)求椭圆的方程;
(Ⅱ)直线过点P(0, 2)且与椭圆相交于A.、B两点,当△AOB面积取得最大值时, 求直线的方程.

来源:2013届四川宜宾高三第二次模拟考试理科数学试题
  • 题型:未知
  • 难度:未知

已知函数,其中为正常数.
(Ⅰ)求函数上的最大值;
(Ⅱ)设数列满足:
(1)求数列的通项公式
(2)证明:对任意的
(Ⅲ)证明:

来源:2013届四川宜宾高三第二次模拟考试理科数学试题
  • 题型:未知
  • 难度:未知