[湖北]2012-2013学年湖北省孝感高中高二9月调研考试理科数学试卷
2007名学生中选取50名学生参加湖北省中学生夏令营,若采用下面的方法选取:先用简单随机抽样从2007人中剔除7人,剩下的2000人再按系统抽样的方法抽取,则每人入选的概率( )
A.不全相等 | B.均不相等 |
C.都相等,且为 | D.都相等,且为 |
10个小球分别编号为1,2,3,4,其中1号球4个,2号球2个,3号球3个,4号球1个,数0.4是指1号球占总体分布的( )
A.频数 | B.频率 | C. | D.累积频率 |
下列四个命题:
①对立事件一定是互斥事件
②若、为两个事件,则
③若事件两两互斥,则
④若事件满足则、是对立事件.
其中错误命题的个数是( )
A.0 | B.1 | C.2 | D.3 |
在2011年孝感高中“校园十佳歌手”大赛中,七位评委为一选手打出的分数如下:
90 89 90 95 93 94 93
去掉一个最高分和一个最低分后,所剩数据的平均值和方差分别为( )
A.92,2 | B.92,2.8 | C.93,2 | D.93,2.8 |
.要考察某公司生产的500克袋装奶粉的质量是否达标,现从800袋牛奶中抽取50袋进行检验.先将800袋牛奶按000,001,…799进行编号,如果从随机数表第8行第7列的数开始向右读取,则最先检测的5袋牛奶的编号依次是( )
A.55,67,19,98,10 | B.556,719,810,507,175 |
C.785,567,199,507,175 | D.556,719,050,717,512 |
(下面摘取了随机数表第8行)
第8行:63 01 63 78 59 16 95 55 67 19 98 10 50 71 75 12 86 73 58 07 44 39 52 38 79
.某流程图如右图所示,现输入如下四个函数,则可以输出的函数是( )
A. | B. |
C. | D. |
若圆上有且只有两个点到直线的距离等于1,则半径的取值范围是( )
A.(4,6) | B. | C. | D. |
有6根细木棒,长度分别为1,2,3,4,5,6(cm),从中任取三根首尾相接,能搭成三角形的概率是( )
A. | B. | C. | D. |
为了了解某地区高三学生的身体发育情况,抽查了该地区100名年龄为17.5岁~18岁的男生体重(kg),得到频率分布直方图如下:
根据上图可得这100名学生中体重在的学生人数是 .
.阅读如图所示的程序框图,若运行该程序后输出的值为,则输入的实数的值为 .
(本小题满分12分)用0,1,2,3,4这五个数字可以组成多少个无重复数字的
(1)四位奇数?
(2)比3210大的四位数?
(本小题满分12分)某种产品的广告费支出与销售额(单位:百万元)之间有如下对应数据:
2 |
4 |
5 |
6 |
8 |
|
30 |
40 |
60 |
50 |
70 |
(1)画出散点图;
(2)请根据上表提供的数据,用最小二乘法求出关于的线性回归方程.(其中
)
(本小题满分12分)为了调查甲、乙两个交通站的车流量,随机选取了14天,统计每天上午8∶00~12∶00间各自的车流量(单位:百辆),得如图所示的统计图,试求:
(1)甲、乙两个交通站的车流量的极差分别是多少?
(2)甲交通站的车流量在间的频率是多少?
(3)甲、乙两个交通站哪个站更繁忙?并说明理由.
(本小题满分12分)某同学先后随机抛掷两枚正方体骰子,其中表示第1枚骰子出现的点数,表示第2枚骰子出现的点数.
(1)求点满足的概率;
(2)当时,求函数为单调函数的概率.
(本小题满分13分)如图所示,已知以点为圆心的圆与直线相切.过点的动直线与圆相交于,两点,是的中点,直线与相交于点.
(1)求圆的方程;
(2)当时,求直线的方程.
(3)是否为定值?如果是,求出其定值;如果不是,请说明理由.
(本小题满分14分)某城市自西向东和自南向北的两条主干道的东南方位有一块空地市规划部门计划利用它建设一个供市民休闲健身的小型绿化广场,如下图所示是步行小道设计方案示意图,
其中,分别表示自西向东,自南向北的两条主干道.设计方案是自主干道交汇点处修一条步行小道,小道为抛物线的一段,在小道上依次以点
为圆心,修一系列圆型小道,这些圆型小道与主干道相切,且任意相邻的两圆彼此外切,若(单位:百米)且.
(1)记以为圆心的圆与主干道切于点,证明:数列是等差数列,并求关于的表达式;
(2)记的面积为,根据以往施工经验可知,面积为的圆型小道的施工工时为(单位:周).试问5周时间内能否完成前个圆型小道的修建?请说明你的理由.