[山东]2012年初中毕业升学考试(山东济南卷)数学
2012年伦敦奥运会火炬传递路线全长约为12800公里,数字12800用科学记数法表示为【 】
A.1.28×103 | B.12.8×103 | C.1.28×104 | D.0.128×105 |
下列事件中必然事件的是【 】
A.任意买一张电影票,座位号是偶数 | B.正常情况下,将水加热到100℃时水会沸腾 |
C.三角形的内角和是360° | D.打开电视机,正在播动画片 |
下列各式计算正确的是【 】
A.3x-2x=1 | B.a2+a2=a4 | C.a5÷a5=a | D.a3•a2=a5 |
化简5(2x-3)+4(3-2x)结果为【 】
A.2x-3 | B.2x+9 | C.8x-3 | D.18x-3 |
暑假即将来临,小明和小亮每人要从甲、乙、丙三个社区中随机选取一个社区参加综合实践活动,那么小明和小亮选到同一社区参加实践活动的概率为【 】
A. | B. | C. | D. |
如图,在8×4的矩形网格中,每格小正方形的边长都是1,若△ABC的三个顶点在图中相应的格点上,则tan∠ACB的值为【 】
A. | B. | C. | D.3 |
下列命题是真命题的是【 】
A.对角线相等的四边形是矩形 | B.一组邻边相等的四边形是菱形 |
C.四个角是直角的四边形是正方形 | D.对角线相等的梯形是等腰梯形 |
一次函数y=kx+b的图象如图所示,则方程kx+b=0的解为【 】
A.x="2" | B.y="2" | C.x="-1" | D.y="-1" |
已知⊙O1和⊙O2的半径是一元二次方程x2-5x+6=0的两根,若圆心距O1O2=5,则⊙O1和⊙O2的位置关系是【 】
A.外离 | B.外切 | C.相交 | D.内切 |
如图,∠MON=90°,矩形ABCD的顶点A、B分别在边OM,ON上,当B在边ON上运动时,A随之在边OM上运动,矩形ABCD的形状保持不变,其中AB=2,BC=1,运动过程中,点D到点O的最大距离为【 】
A. B. C.5 D.
如图,矩形BCDE的各边分别平行于x轴或y轴,物体甲和物体乙分别由点A(2,0)同时出发,沿矩形BCDE的边作环绕运动,物体甲按逆时针方向以1个单位/秒匀速运动,物体乙按顺时针方向以2个单位/秒匀速运动,则两个物体运动后的第2012次相遇地点的坐标是【 】
A.(2,0) | B.(-1,1) | C.(-2,1) | D.(-1,-1) |
如图,二次函数的图象经过(-2,-1),(1,1)两点,则下列关于此二次函数的说法正确的是【 】
A.y的最大值小于0 | B.当x=0时,y的值大于1 |
C.当x=-1时,y的值大于1 | D.当x=-3时,y的值小于0 |
如图,在Rt△ABC中,∠C=90°,AC=4,将△ABC沿CB向右平移得到△DEF,若平移距离为2,则四边形ABED的面积等于 ▲ .
如图,在Rt△ABC中,∠B=90°,AB=6,BC=8,以其三边为直径向三角形外作三个半圆,矩形EFGH的各边分别与半圆相切且平行于AB或BC,则矩形EFGH的周长是 .
如图,济南建邦大桥有一段抛物线型的拱梁,抛物线的表达式为y=ax2+bx.小强骑自行车从拱梁一端O沿直线匀速穿过拱梁部分的桥面OC,当小强骑自行车行驶10秒时和26秒时拱梁的高度相同,则小强骑自行车通过拱梁部分的桥面OC共需 秒.
(1)如图1,在ABCD中,点E,F分别在AB,CD上,AE=CF.求证:DE=BF.
(2)如图2,在△ABC中,AB=AC,∠A=40°,BD是∠ABC的平分线,求∠BDC的度数.
冬冬全家周末一起去济南山区参加采摘节,他们采摘了油桃和樱桃两种水果,其中油桃比樱桃多摘了5斤,若采摘油桃和樱桃分别用了80元,且樱桃每斤价格是油桃每斤价格的2倍,问油桃和樱桃每斤各是多少元?
济南以“泉水”而闻名,为保护泉水,造福子孙后代,济南市积极开展“节水保泉”活动,宁宁利用课余时间对某小区300户居民的用水情况进行了统计,发现5月份各户居民的用水量比4月份有所下降,宁宁将5月份各户居民的节水量统计整理如下统计图表:
节水量(米3) |
1 |
1.5 |
2.5 |
3 |
户 数 |
50 |
80 |
100 |
700 |
(1)300户居民5月份节水量的众数,中位数分别是多少米3?
(2)扇形统计图中2.5米3对应扇形的圆心角为 度;
(3)该小区300户居民5月份平均每户节约用水多少米3?
如图1,在菱形ABCD中,AC=2,BD="2" 3 ,AC,BD相交于点O.
(1)求边AB的长;
(2)如图2,将一个足够大的直角三角板60°角的顶点放在菱形ABCD的顶点A处,绕点A左右旋转,其中三角板60°角的两边分别与边BC,CD相交于点E,F,连接EF与AC相交于点G.
①判断△AEF是哪一种特殊三角形,并说明理由;
②旋转过程中,当点E为边BC的四等分点时(BE>CE),求CG的长.
如图,已知双曲线,经过点D(6,1),点C是双曲线第三象限上的动点,过C作CA⊥x轴,过D作DB⊥y轴,垂足分别为A,B,连接AB,BC.
(1)求k的值;
(2)若△BCD的面积为12,求直线CD的解析式;
(3)判断AB与CD的位置关系,并说明理由.