2010年高级中等学校招生全国统一考试数学卷(江苏宿迁)
小明在做解方程作业时,不小心将方程中的一个常数污染了看不清楚,被污染的方程是: ,怎么呢?小明想了一想,便翻看书后答案,此方程的解是,很快补好了这个常数,并迅速地完成了作业,同学们,你们能补出这个常数吗?它应是( )
A.1 | B.2 | C.3 | D.4 |
从小明家到学校的路程是2400米,如果小明早上7点离家,要在7点30分到40分之间到达学校,设步行速度为米/分,小明步行的速度范围是_________。
某厂第二车间的人数比第一车间的人数的少30人。如果从第一车间调10人到第二车间,那么第二车间的人数就是第一车间的,问这两个车间各有多少人?(方程组解答)
一个长方形足球场的长为xcm,宽为70m,如果它的周长大于350m,面积小于7560m2,求x的取值范围,并判断这个球场是否可以用作国际足球比赛?
(注:用于国际比赛的足球场的长在100m到110m之间,宽在64m到75m之间)
某校准备在甲、乙两家公司为毕业班学生制作一批纪念册.甲公司提出:每册收材料费5元,另收设计费1500元;乙公司提出:每册收材料费8元,不收设计费.
(1)设纪念册的册数为x,甲公司收费用表示,乙公司收费用表示,分别写出两家公司的收费与纪念册册数的关系;
(2)当纪念册的册数是多少时,两家公司的收费是一样的?
(3)如果学校派你去甲、乙两家公司订做纪念册,你会选择哪家公司?(就纪念册的册数讨论)
外切两圆的半径分别为2 cm和3cm,则两圆的圆心距是
A.1cm | B.2cm | C.3cm | D.5cm |
有9名同学参加歌咏比赛,他们的预赛成绩各不相同,现取其中前4名参加决赛,小红同学在知道自己成绩的情况下,要判断自己能否进入决赛,还需要知道这9名同学成绩的
A.众数 | B.中位数 | C.平均数 | D.极差 |
小明沿着坡度为1:2的山坡向上走了1000m,则他升高了
A.m | B.500m | C.m | D.1000m |
如图,ABC是一个圆锥的左视图,其中AB=AC=5,BC=8,则这个圆锥的侧面积是
A B. C. D.
如图,在矩形ABCD中, AB=4,BC=6,当直角三角板MPN 的直角顶点P在BC边上移动时,直角边MP始终经过点A,设直角三角板的另一直角边PN与CD相交于点Q.BP=x,CQ=y,那么y与x之间的函数图象大致是
审计署发布公告:截止2010年5月20日,全国共接收玉树地震救灾捐赠款物70.44亿元.将70.44亿元用科学记数法表示为 ▲ 元.
在平面直角坐标系中,线段AB的端点A的坐标为(-3,2),将其先向右平移4个单位,再向下平移3个单位,得到线段A′B′,则点A对应点A′的坐标为 .
直线上有2010个点,我们进行如下操作:在每相邻两点间插入1个点,经过3次这样的操作后,直线上共有 ▲ 个点.
如图,正方形纸片ABCD的边长为8,将其沿EF折叠,
则图中①②③④四个三角形的周长之和为 ▲ .
数学活动课上,老师在黑板上画直线平行于射线AN(如图),让同学们在直线l和射线AN上各找一点B和C,使得以A、B、C为顶点的三角形是等腰直角三角形.
这样的三角形最多能画 ▲ 个.
一家公司招考员工,每位考生要在A、B、C、D、E这5道试题中随机抽出2道题回答,规定答对其中1题即为合格.已知某位考生会答A、B两题,试求这位考生合格的概率.
如图,已知一次函数与反比例函数的图象交于A、B两点.
(1)求A、B两点的坐标;
(2)观察图象,可知一次函数值小于反比例函数值的的取值范围是 ▲ .(把答案直接写在答题卡相应位置上)
为了解学生课余活动情况,某校对参加绘画、书法、舞蹈、乐器这四个课外兴趣小组的人员分布情况进行抽样调查,并根据收集的数据绘制了下面两幅不完整的统计图,请根据图中提供的信息,解答下面的问题:
(1)此次共调查了多少名同学?
(2)将条形图补充完整,并计算扇形统计图中书法部分的圆心角的度数;
(3)如果该校共有1000名学生参加这4个课外兴趣小组,而每个教师最多只能辅导本组的20名学生,估计每个兴趣小组至少需要准备多少名教师?
如图,在平面直角坐标系中,O为原点,每个小方格的边长为1个单位长度.在第一象限内有横、纵坐标均为整数的A、B两点,且OA= OB=.
(1)写出A、B两点的坐标;
(2)画出线段AB绕点O旋转一周所形成的图形,并求其面积(结果保留π).
如图,AB是⊙O的直径, P为AB延长线上任意一点,C为半圆ACB的中点,PD切⊙O于点D,连结CD交AB于点E.
求证:(1)PD=PE;
(2).
某花农培育甲种花木2株,乙种花木3株,共需成本1700元;培育甲种花木3株,乙种花木1株,共需成本1500元.
(1)求甲、乙两种花木每株成本分别为多少元?
(2)据市场调研,1株甲种花木售价为760元, 1株乙种花木售价为540元.该花农决定在成本不超过30000元的前提下培育甲乙两种花木,若培育乙种花木的株数是甲种花木的3倍还多10株,那么要使总利润不少于21600元,花农有哪几种具体的培育方案?