[吉林]2012届吉林省长春市高三第一次调研测试文科数学试卷
若命题为假命题,则
A.、中至少有一个为真命题 | B.、中至多有一个为真命题 |
C.、均为真命题 | D.、均为假命题 |
已知复数在复平面内对应的点位于
A.第一象限 | B.第二象限 |
C.第三象限 | D.第四象限 |
如图所示,程序框图的功能是
A.求数列的前10项和 |
B.求数列的前10项和 |
C.求数列的前11项和 |
D.求数列的前11项和 |
一个空间几何体的正视图和侧视图都是边长为1的正方形,俯视图是一个直径为1的圆,那么这个几何体的体积为
A. | B. | C. | D. |
某圆锥曲线有两个焦点F1、F2,其上存在一点满足=4:3:2,则此圆锥曲线的离心率等于
A.或 | B.或2 | C.或2 | D.或 |
设是两条不同的直线,是两个不同的平面,则下列四个命题:
①若a⊥b,a⊥α,bα,则b∥α; ②若a∥α,a⊥β,则α⊥β;
③若a⊥β,α⊥β,则a∥α或aα; ④若a⊥b,a⊥α,b⊥β,则α⊥β.
其中正确命题的个数为
A.1 | B.2 | C.3 | D.4 |
函数为奇函数,该函数的部分图像如图所示,、分别为最高点与最低点,并且,则该函数图象的一条对称轴为
A. | B. |
C. | D. |
若直线与圆交于、两点,且,其中O为原点,则实数的值为
A.2 | B.-2 | C.2或-2 | D.或 |
设是定义在上的增函数,且对于任意的都有恒成立. 如果实数满足不等式,那么 的取值范围是
A.(9, 49) | B.(13, 49) | C.(9, 25) | D.(3, 7) |
给出下列四个命题:
①,使得;
②设,则,必有;
③设,则函数是奇函数;
④设,则.
其中正确的命题的序号为___________(把所有满足要求的命题序号都填上)
(本小题满分12分)
已知函数.
⑴求函数的最小正周期;
⑵在给定的坐标系内,用“五点作图法”画出函数在一个周期内的图象.
(本小题满分12分)
已知数列满足,.
⑴求证:数列是等比数列,并写出数列的通项公式;
⑵若数列满足,求数列的前n项和.
(本小题满分12分)如图,在底面为直角梯形的四棱锥中,,,,.
⑴求证:;
⑵当时,求此四棱锥的表面积.
(本小题满分12分)
已知椭圆、抛物线的焦点均在轴上,的中心和的顶点均为原点,从每条曲线上各取两个点,将其坐标记录于下表中:
3 |
2 |
4 |
||
0 |
4 |
[ |
⑴求的标准方程;
⑵是否存在直线满足条件:①过的焦点;②与交不同两点且满足?若存在,求出直线的方程;若不存在,说明理由.
(本小题满分12分)
已知定义在正实数集上的函数,,其中.设两曲线,有公共点,且在该点处的切线相同.
⑴用表示,并求的最大值;
⑵求的极值.
(本小题满分10分)选修4-1:几何证明选讲.如图,⊙O内切△ABC的边于D、E、F,AB=AC,连接AD交⊙O于点H,直线HF交BC的延长线于点G.
⑴证明:圆心O在直线AD上;
⑵证明:点C是线段GD的中点.
(本小题满分10分)选修4-4:坐标系与参数方程选讲.
在极坐标系中, O为极点, 半径为2的圆C的圆心的极坐标为.
⑴求圆C的极坐标方程;
⑵是圆上一动点,点满足,以极点O为原点,以极轴为x轴正半轴建立直角坐标系,求点Q的轨迹的直角坐标方程.