2021年山东省泰安市中考数学试卷(含答案与解析)
如图是由若干个同样大小的小正方体所搭几何体的俯视图,小正方形中的数字表示在该位置小正方体的个数,则这个几何体的左视图是
A. | B. | C. | D. |
如图,直线 ,三角尺的直角顶点在直线 上,且三角尺的直角被直线 平分,若 ,则下列结论错误的是
A. |
|
B. |
|
C. |
|
D. |
|
为了落实"作业、睡眠、手机、读物、体质"等五项管理要求,了解学生的睡眠状况,调查了一个班50名学生每天的睡眠时间,绘成睡眠时间频数分布直方图如图所示,则所调查学生睡眠时间的众数,中位数分别为
A. |
|
B. |
|
C. |
|
D. |
|
如图,在 中, ,以点 为圆心,3为半径的圆与边 相切于点 ,与 , 分别交于点 和点 ,点 是优弧 上一点, ,则 的度数是
A. |
|
B. |
|
C. |
|
D. |
|
如图,在平行四边形 中, 是 的中点,则下列四个结论:
① ;
②若 , ,则 ;
③若 ,则 ;
④若 ,则 与 全等.
其中正确结论的个数为
A. |
1个 |
B. |
2个 |
C. |
3个 |
D. |
4个 |
如图,为了测量某建筑物 的高度,小颖采用了如下的方法:先从与建筑物底端 在同一水平线上的 点出发,沿斜坡 行走130米至坡顶 处,再从 处沿水平方向继续前行若干米后至点 处,在 点测得该建筑物顶端 的仰角为 ,建筑物底端 的俯角为 ,点 、 、 、 、 在同一平面内,斜坡 的坡度 .根据小颖的测量数据,计算出建筑物 的高度约为(参考数据:
A. |
136.6米 |
B. |
86.7米 |
C. |
186.7米 |
D. |
86.6米 |
如图,在矩形 中, , ,点 在线段 上运动(含 、 两点),连接 ,以点 为中心,将线段 逆时针旋转 到 ,连接 ,则线段 的最小值为
A. |
|
B. |
|
C. |
|
D. |
3 |
2021年5月15日7时18分,天问一号着陆巡视器成功着陆于火星,我国首次火星探测任务着陆火星取得圆满成功.探测器距离地球约3.2亿千米.数据3.2亿千米用科学记数法可以表示为 千米.
《九章算术》中记载:“今有甲乙二人持钱不知其数,甲得乙半而钱五十,乙得甲太半而钱亦五十.问甲、乙持钱各几何?”其大意是:“今有甲乙二人,不知其钱包里有多少钱,若乙把其一半的钱给甲,则甲的钱数为50;而甲把其 的钱给乙,则乙的钱数也为50.问甲、乙各有多少钱?”设甲的钱数为 ,乙的钱数为 ,根据题意,可列方程组为 .
如图是抛物线 的部分图象,图象过点 ,对称轴为直线 ,有下列四个结论:① ;② ;③ 的最大值为3;④方程 有实数根.其中正确的为 (将所有正确结论的序号都填入).
如图,将矩形纸片 折叠 ,使 落在 上, 为折痕,然后将矩形纸片展开铺在一个平面上, 点不动,将 边折起,使点 落在 上的点 处,连接 ,若 , ,则 的长为 .
如图,点 在直线 上,点 的横坐标为2,过点 作 ,交 轴于点 ,以 为边,向右作正方形 ,延长 交 轴于点 ;以 为边,向右作正方形 ,延长 交 轴于点 ;以 为边,向右作正方形 ,延长 交 轴于点 ; ;照这个规律进行下去,则第 个正方形 的边长为
(结果用含正整数 的代数式表示).
为庆祝中国共产党成立100周年,落实教育部《关于在中小学组织开展“从小学党史,永远跟党走”主题教育活动的通知》要求,某学校举行党史知识竞赛,随机调查了部分学生的竞赛成绩,绘制成两幅不完整的统计图表.根据统计图表提供的信息,解答下列问题:
(1)本次共调查了 名学生; 组所在扇形的圆心角为 度;
(2)该校共有学生1600人,若90分以上为优秀,估计该校优秀学生人数为多少?
(3)若 组14名学生中有4人满分,设这4名学生为 , , , ,从其中抽取2名学生代表学校参加上一级比赛,请用列表或画树状图的方法求恰好抽到 , 的概率.
竞赛成绩统计表(成绩满分100分)
组别 |
分数 |
人数 |
组 |
|
4 |
组 |
|
|
组 |
|
10 |
组 |
|
|
组 |
|
14 |
合计 |
如图,点 为函数 与函数 图象的交点,点 的纵坐标为4, 轴,垂足为点 .
(1)求 的值;
(2)点 是函数 图象上一动点,过点 作 于点 ,若 ,求点 的坐标.
接种疫苗是阻断新冠病毒传播的有效途径,针对疫苗急需问题,某制药厂紧急批量生产,计划每天生产疫苗16万剂,但受某些因素影响,有10名工人不能按时到厂.为了应对疫情,回厂的工人加班生产,由原来每天工作8小时增加到10小时,每人每小时完成的工作量不变,这样每天只能生产疫苗15万剂.
(1)求该厂当前参加生产的工人有多少人?
(2)生产4天后,未到的工人同时到岗加入生产,每天生产时间仍为10小时.若上级分配给该厂共760万剂的生产任务,问该厂共需要多少天才能完成任务?
四边形 为矩形, 是 延长线上的一点.
(1)若 ,如图1,求证:四边形 为平行四边形;
(2)若 ,点 是 上的点, , 于点 ,如图2,求证: 是等腰直角三角形.
二次函数 的图象经过点 , ,与 轴交于点 ,点 为第二象限内抛物线上一点,连接 、 ,交于点 ,过点 作 轴于点 .
(1)求二次函数的表达式;
(2)连接 ,当 时,求直线 的表达式;
(3)请判断: 是否有最大值,如有请求出有最大值时点 的坐标,如没有请说明理由.